Supporting Information
for
An Efficient Fe-H₂O Medium In-situ Reduction and Cyclization Reaction for the Synthesis of Pyrazolo[3,4-α]acridin-10-one and Pyrazolo[4,3-α]acridin-10-one Derivatives

Hui Xu, Lei Li, Cong Lin, Wang Kou, Zhi Ling, Zhongyun Xu, Liangce Rong

Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, P. R. China
*Corresponding author: lcrong@jsnu.edu.cn

Table of contents

(A) General methods ..S2

(B) Copies of ¹H NMR and ¹³C NMR spectra for the product 4S3-S23

(C) Copies of ¹H NMR and ¹³C NMR spectra for the product 6S24-S38
(A) General methods:

1. All reagents were purchased from the Merck and Sigma-Aldrich chemical companies and used without further purification. Melting points were determined on XT-5 microscopic melting-point apparatus and were uncorrected. IR spectra were recorded on a FT Bruker Tensor 27 spectrometer. 1H NMR and 13C NMR spectra were obtained from solution in DMSO-d_6 with Me$_4$Si as internal standard using a Bruker-400 spectrometer. HRMS spectra were obtained with a Bruker microTOF-Q 134 instrument.

1.1 General procedures:

Aromatic aldehyde 1 (1 mmol), 1,3-cyclohexanedione (dimedone) 2, 6-nitro-1H-indazole or 5-nitro-1H-indazole 3 (1 mmol), Fe (3 mmol), EtOH (6 mL), H$_2$O (1 mL), and HOAc (1 mL) were put into a 25-mL round-bottom flask. Then, the mixture was stirred at 80 °C about 6 h (monitored reactions by TLC). After completion the reaction, 8 mL saturated salt water was added into the reaction system. The mixture was transferred to a separatory funnel, and was extracted with 3x15 mL of ethyl acetate. Organics were combined and washed thoroughly with saturated NaCl (aq), dried over anhydrous Na$_2$SO$_4$, and filtered through Celite. Following reduction of the solvent in vacuo, the material remaining was purified by crystallization from DMF to give the pure product 4 and 6.
(B) Copies of 1H NMR and 13C NMR spectra for the product 4:

![NMR Spectra](image)

Fig 1 1H NMR Spectra of 4a
Fig 2 13C NMR Spectra of 4a

Fig 3 1H NMR Spectra of 4b
Fig 4 13C NMR Spectra of 4b

Fig 5 1H NMR Spectra of 4c
Fig 6 13C NMR Spectra of 4c

Fig 7 1H NMR Spectra of 4d
Fig 8 13C NMR Spectra of 4d

Fig 9 1H NMR Spectra of 4e
Fig 10 13C NMR Spectra of 4e

Fig 11 1H NMR Spectra of 4f
Fig 12 13C NMR Spectra of 4f

Fig 13 1H NMR Spectra of 4g
Fig 14 13C NMR Spectra of 4g

Fig 15 1H NMR Spectra of 4h
Fig 16 13C NMR Spectra of 4h
Fig 17 1H NMR Spectra of 4i

Fig 18 13C NMR Spectra of 4i
Fig 19 1H NMR Spectra of 4j

Fig 20 13C NMR Spectra of 4j
Fig 21 1H NMR Spectra of 4k

Fig 22 13C NMR Spectra of 4k
Fig 23 1H NMR Spectra of 4I

Fig 24 ^{13}C NMR Spectra of 4I
Fig 25 1H NMR Spectra of 4m

Fig 26 13C NMR Spectra of 4m
Fig 27 1H NMR Spectra of 4n

Fig 28 13C NMR Spectra of 4n
Fig 29 ^1H NMR Spectra of 4o

Fig 30 ^{13}C NMR Spectra of 4o
Fig 31 1H NMR Spectra of 4p

Fig 32 13C NMR Spectra of 4p
Fig 33 1H NMR Spectra of 4q

Fig 34 13C NMR Spectra of 4q
Fig 35 1H NMR Spectra of 4r

Fig 36 13C NMR Spectra of 4r
Fig 37 1H NMR Spectra of 4s

Fig 38 13C NMR Spectra of 4s
Fig 39 1H NMR Spectra of 4t

Fig 40 13C NMR Spectra of 4t
Fig 41 1H NMR Spectra of 4u

Fig 42 13C NMR Spectra of 4u
(C) Copies of 1H NMR and 13C NMR spectra for the product 6:

![Spectra Image]

Fig 43 1H NMR Spectra of 6a
Fig 44 13C NMR Spectra of 6a

Fig 45 1H NMR Spectra of 6b

Fig 46 13C NMR Spectra of 6b
Fig 47 1H NMR Spectra of 6c

Fig 48 13C NMR Spectra of 6c
Fig 49 1H NMR Spectra of $6d$

Fig 50 13C NMR Spectra of $6d$
Fig 51 1H NMR Spectra of 6e

Fig 52 13C NMR Spectra of 6e
Fig 53 1H NMR Spectra of 6f

Fig 54 13C NMR Spectra of 6f
Fig 55 1H NMR Spectra of 6g

Fig 56 13C NMR Spectra of 6g
Fig 57 1H NMR Spectra of 6h
Fig 58 13C NMR Spectra of 6h

Fig 59 1H NMR Spectra of 6i
Fig 60 13C NMR Spectra of 6i

Fig 61 1H NMR Spectra of 6j
Fig 62 13C NMR Spectra of $6j$

Fig 63 1H NMR Spectra of $6k$
Fig 64 13C NMR Spectra of 6k

Fig 65 1H NMR Spectra of 6l
Fig 66 13C NMR Spectra of 6l

Fig 67 1H NMR Spectra of 6m
Fig 68 13C NMR Spectra of $6m$

Fig 69 1H NMR Spectra of $6n$
Fig 70 13C NMR Spectra of 6n

Fig 71 1H NMR Spectra of 6o
Fig 72 13C NMR Spectra of 60