Supporting Information

for

Brønsted Acid Catalyzed Selective Cyclization Reaction: An Efficient and Facile Synthesis of Polysubstituted Imidazole and Pyrrole Derivatives

Lei Dai, Ping Shu, Zhansheng Wang, Qingyang Li, Qiuyu Yu, Yanhui Shi, Liangce Rong*

Cw Chu college, College of Chemistry and Chemical Engineering, Jiangsu Normal University,
Xuzhou 221116, Jiangsu, People’s Republic of China
*Corresponding author: lcrong@jsnu.edu.cn

Table of contents

(A) General methods ...S2
(B) X-ray diffraction of 3a ..S2-S3
(C) Copies of 1H NMR and 13C NMR spectra for the productsS4-S35
(A) General methods:

1. Experimental section:

All reagents were purchased from the Merck and Sigma-Aldrich chemical companies and used without further purification. Melting points were determined on XT-5 microscopic melting-point apparatus and were uncorrected. IR spectra were recorded on a FT Bruker Tensor 27 spectrometer. 1H NMR and 13C NMR spectra of 3 were obtained from solution in DMSO-d_6 with Me$_4$Si as internal standard using a Bruker-400 spectrometer under 50 °C, 1H NMR and 13C NMR spectra of 5 were obtained from solution in DMSO-d_6 with Me$_4$Si as internal standard using a Bruker-400 spectrometer under 25 °C. HRMS spectra were obtained with a Bruker microTOF-Q 134 instrument. X-ray diffraction analysis was performed with a Siemens P4 diffractometer.

2. General procedures:

The mixture of substituted 3-(2-oxo-2-arylethylidene)-indolin-2-one 1 (1 mmol), 1,3-dimethylurea 2 (1.2 mmol) or 3-amino-1-phenyl-1H-pyrazol-5(4H)-one 4 (1 mmol), p-TSA•H$_2$O (0.3 mmol), and CH$_3$CN (5 mL) was put in a 25 mL flask and reacted under 80 °C (monitored by TLC) about 2 h. After completion, the reaction the mixture was cooled to room temperature and the precipitate obtained was isolated by filtration and dried. Compounds 3 or 5 were purified by recrystallization from DMF or EtOH.

(B) X-ray diffraction of 3a:

Figure 1.X-Ray crystal structure of 3a (CCDC 1469591)
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C<sub>20</sub>H<sub>18</sub>ClN<sub>3</sub>O<sub>2</sub></td>
</tr>
<tr>
<td>Formula weight</td>
<td>367.82</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2(1)/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.8551(14) Å, α = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>b = 16.606(2) Å, β = 120.337(8) deg.</td>
</tr>
<tr>
<td></td>
<td>c = 13.4927(17) Å, γ = 90 deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1905.8(4) Å<sup>3</sup></td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>4, 1.282 Mg/m<sup>3</sup></td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.096 mm<sup>-1</sup></td>
</tr>
<tr>
<td>F(000)</td>
<td>1016</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.62 to 25.00 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-12 ≤ h ≤ 11, -16 ≤ k ≤ 17, -19 ≤ l ≤ 19</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>18732 / 4217 [R(int) = 0.0253]</td>
</tr>
<tr>
<td>Completeness to theta = 25.00</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7457 and 0.6804</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F<sup>2</sup></td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4217 / 1 / 317</td>
</tr>
<tr>
<td>Goodness-of-fit on F<sup>2</sup></td>
<td>1.034</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R<sub>1</sub> = 0.0803, wR<sub>2</sub> = 0.1811</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R<sub>1</sub> = 0.0588, wR<sub>2</sub> = 0.1610</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.0042(15)</td>
</tr>
<tr>
<td>Largest diff. peak and hole /e. Å<sup>3</sup></td>
<td>0.835 and -0.456</td>
</tr>
</tbody>
</table>

These data can be obtained free of charge from the Cambridge Crystallographic DataCentre via www.ccdc.cam.ac.uk/data_request/cif, the CCDC number is 1469591.
(C) Copies of 1H NMR and 13C NMR spectra for the products:

1H NMR of compound 3a (50 °C)

13C NMR of compound 3a (50 °C)
1H NMR of compound 3b (50 °C)

13C NMR of compound 3b (50 °C)
1H NMR of compound 3c (50 °C)

13C NMR of compound 3c (50 °C)
1H NMR of compound 3d (50 °C)

13C NMR of compound 3d (50 °C)
1H NMR of compound 3e (25 °C)

1H NMR of compound 3e (25 °C and 50 °C)
1H NMR of compound 3e (50 °C)

13C NMR of compound 3e (50 °C)
1H NMR of compound $3g$ (50 °C)

13C NMR of compound $3g$ (50 °C)
1H NMR of compound 3h (50 °C)

13C NMR of compound 3h (50 °C)
1H NMR of compound 3i (50 °C)

13C NMR of compound 3i (50 °C)
1H NMR of compound 3j (50 °C)

13C NMR of compound 3j (50 °C)
1H NMR of compound 3k (50 °C)

13C NMR of compound 3k (50 °C)
^{1}H NMR of compound 31 (50 °C)

^{13}C NMR of compound 31 (50 °C)
1H NMR of compound 3m (50 °C)

13C NMR of compound 3m (50 °C)
\[{^1}H \text{NMR of compound 3n} \ (50 \ ^\circ \text{C}) \]

\[{^{13}}C \text{NMR of compound 3n} \ (50 \ ^\circ \text{C}) \]
1H NMR of compound 3o (50 °C)

13C NMR of compound 3o (50 °C)
1H NMR of compound 3p (50 °C)

13C NMR of compound 3p (50 °C)
HNMR of compound 3r (50 °C)

\[^{13}\text{C NMR of compound 3r (50 °C)} \]
\(^1H \text{ NMR of compound 5a} \)

\(^{13}C \text{ NMR compound of 5a} \)
1H NMR compound of 5b

13C NMR compound of 5b
13C NMR compound of 5c

1H NMR compound of 5c
1H NMR compound of 5d

13C NMR compound of 5d
1H NMR compound of 5e

13C NMR compound of 5e
1H NMR compound of 5f

13C NMR compound of 5f
1H NMR compound of 5g

13C NMR compound of 5g
1H NMR compound of 5i

13C NMR compound of 5i
1H NMR compound of 5j

13C NMR compound of 5j
H NMR compound of 5k

C NMR compound of 5k
H NMR compound of S1

![H NMR spectrum of S1](image)

C NMR compound of S1

![C NMR spectrum of S1](image)
1H NMR compound of 5m

13C NMR compound of 5m