Supporting Information

Synthesis of 3-Thia-1-dethiacephems via Regioselective Iodocyclization Reaction

Dinesh R. Garud, a,*, 1 Navnath D. Rode, b Sagar R. Bhave, a, 1 Vinod S. Ranpise, a, 1 Ramesh R. Joshi, b Rohini R. Joshi, b Mamoru Koketsu c.

aDepartment of Chemistry, Sir Parashurambhau College, Tilak Road, Pune 411 030, Maharashtra, India.
bDivision of Organic Chemistry, National Chemical Laboratory, Pune 411 008, Maharashtra, India.
cDepartment of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

E-mail: ddgarud@gmail.com, Tel Ph.: +91-9389344438.

1 Affiliated to Savitribai Phule Pune University (formerly University of Pune).

List of the Content:

<table>
<thead>
<tr>
<th>Experimental: General</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>General procedure and spectral data of N'-substituted-N-homopropargyl-N-acyl-thioureas 3.</td>
<td>S3-S9</td>
</tr>
<tr>
<td>Optimization conditions for the iodocyclization reaction of 3a.</td>
<td>S10</td>
</tr>
<tr>
<td>General procedure for the iodocyclization reaction of 3 and spectral data of 3-Thia-1-dethiacephems 4.</td>
<td>S8-S12</td>
</tr>
</tbody>
</table>
EXPERIMENTAL

General
All reactions were performed in round-bottom flask fitted with balloon filled with nitrogen, otherwise specified. Transfer of air- and moisture-sensitive liquids were performed via cannula under a positive pressure of nitrogen. TLC analysis was performed on Merck TLC (silica gel 60F$_{254}$ on glass plate). Evaporation and condensation were carried out in vacuo. Silica gel (60-120 mesh) manufactured by Fisher Scientific was used for column chromatography. Visualization of TLC was carried out by using Iodine or by charring solutions such as molybdenum, anisaldehyde, ninhydrin and H$_2$SO$_4$. Dry tetrahydrofuran (THF) was purchased from S D Fine Chemical Ltd and was further dried using molecular sieves (3 Å) prior to use. Dichloromethane (DCM) distilled from CaO$_2$ prior to use. DMF was deoxygenated prior to use. Iodine was purchased from Fisher Scientific chemicals private Ltd. Propargyl bromide, m-tolyl isothiocyanate, p-tolyl isothiocyanate, and (3R,4R)-(+-)4-acetoxy-3-[(R)-(tert-butyldimethylsilyloxy)ethyl]-azetidinone were purchased from TCI chemicals. Phenyl isothiocyanate, p-chlorophenyl isothiocyanate and m-chlorophenyl isothiocyanate were purchased from Wako Pure Chemical Industries Ltd. NaH was purchased from Nacalai Tesque Inc. o-Tolyl isothiocyanate, o-chlorophenyl isothiocyanate, p-methoxy isothiocyanate, p-fluoro isothiocyanate, p-nitro isothiocyanate, p-trifluoromethyl isothiocyanate, p-cyano isothiocyanate and Indium were purchased from Aldrich Chemical Company.

IR spectra were measured on SHIMADZU FT-IR8400 or JASCO FT/IR-410 Fourier Transform Infrared Spectrometer. The 1H NMR spectra were measured on JEOL:JNM ECX-400 P or Bruker Advance II-400 spectrometers in CDCl$_3$. Chemical shifts of protons are reported in δ values referred to TMS as an internal standard, and the following abbreviation were used as follows: s: singlet, d: doublet, t: triplet, m: multiplet. The 13C NMR spectra was obtained from the JEOL:JNM ECX-400 P spectrometers in CDCl$_3$. MS was measured on a JEOL JMS-700 or Thermo Scientific Q-Exactive, Accela 1250 pump.

Abbreviations

TBS = tert-Butyldimethylsilyl.
General procedure for the preparation of N'-substituted- N-homopropargyl-N-acyl-thioureas (3):

To a suspension of NaH (60% in mineral oil, 0.561 mmol) in 5 mL of THF at -10 ºC was added 4-(propargyl)-2-azetidinone 1 (100 mg, 0.374 mmol) in 2 mL THF over 5 min. The mixture was stirred at -10 ºC for an additional 15 min and isothiocyanate 2 (0.561 mmol) in 2 mL THF was added dropwise. The reaction mixture was stirred for 5–10 h and the excess of NaH was quenched with 2 N HCl. The organic layer was washed with water. The aqueous layer was extracted 3 times with 10 mL of diethyl ether each. The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography (SiO₂: hexane/ethyl acetate = 20/1) to give the corresponding products 3a–m.

The isolated yield and the spectra data for 3a-3m are as follows:

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-N-(4-chlorophenyl)-2-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide (3a).

Yield: 155 mg (95%); colourless liquid. IR (Neat): 831, 1068, 1134, 1250, 1328, 1379, 1494, 1543, 1600, 1720, 1768, 3304 cm⁻¹. ¹H NMR (CDCl₃): δ 0.07 (s, 3H), 0.10 (s, 3H), 0.85 (s, 9H), 1.28 (d, J = 6.1 Hz, 3H), 2.08 (t, J = 2.7 Hz, 1H), 3.02–3.19 (m, 2H), 3.24 (t, J = 2.7 Hz, 1H), 4.31–4.40 (m, 1H), 4.53–4.58 (m, 1H), 7.34 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 10.19 (brs, 1H). ¹³C NMR (CDCl₃): δ -5.41, -4.09, 17.6, 21.3, 22.2, 25.4, 53.4, 61.0, 64.5, 71.7, 78.4, 125.2, 128.9, 131.7, 135.7, 162.2, 175.8. HRMS: m/z = 437.1486, calcd. for C₂₁H₃₀N₂O₂SSiCl, found 437.1482 [M+ H]⁺.
(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-2-oxo-N-phenyl-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide (3b).

Yield: 139 mg (92%); colourless liquid. IR (Neat): 837, 1136, 1267, 1313, 1379, 1460, 1550, 1656, 1749, 2224, 3443 cm⁻¹. ¹H NMR (CDCl₃): δ 0.10 (s, 3H), 0.12 (s, 3H), 0.88 (s, 9H), 1.31 (d, J = 6.3 Hz, 3H), 2.10 (t, J = 2.7 Hz, 1H), 3.05–3.19 (m, 2H), 3.25 (t, J = 2.9 Hz, 1H), 4.32–4.39 (m, 1H), 4.54–4.59 (m, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 10.23 (brs, 1H). ¹³C NMR (CDCl₃): δ -5.34, -4.06, 17.7, 21.4, 22.3, 25.5, 53.4, 61.0, 64.6, 71.7, 78.6, 124.1, 126.6, 128.8, 137.2, 167.3, 175.96. HRMS: m/z = 402.1797, calcd. for C₂₁H₃₀N₂O₂SSi, found 402.1808 [M⁺].

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-2-oxo-4-(prop-2-yn-1-yl)-N-(o-tolyl)azetidine-1-carbothioamide (3c).

Yield: 148 mg (95%); white solid; mp: 90–91°C. IR (KBr): 765, 1054, 1217, 1305, 1537, 1590, 1760, 2935, 3273 cm⁻¹. ¹H NMR (CDCl₃): δ 0.11 (s, 3H), 0.12 (s, 3H), 0.90 (s, 9H), 1.31 (d, J = 6.3 Hz, 3H), 2.09 (s, 1H), 2.31 (s, 3H), 3.05–3.30 (m, 3H), 4.35–4.43 (m, 1H), 4.56–4.62 (m, 1H), 7.24–7.30 (m, 3H), 7.65 (d, J = 8.3 Hz, 1H), 9.98 (brs, 1H). ¹³C NMR (CDCl₃): δ -5.23, -4.12, 17.9, 21.4, 22.4, 25.6, 53.2, 61.1, 64.5, 71.7, 78.5, 126.3, 126.4, 127.5, 130.7, 133.5, 135.7, 167.1, 176.7. HRMS: m/z = 417.2032, calcd. for C₂₂H₃₃N₂O₂SSi, found 417.2027 [M+ H⁺].

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-2-oxo-4-(prop-2-yn-1-yl)-N-(m-tolyl)azetidine-1-carbothioamide (3d).
Yield: 142 mg (91%); colourless liquid. IR (Neat): 835, 1066, 1134, 1257, 1381, 1464, 1562, 1612, 1759, 2114, 2292, 3306 cm⁻¹. ¹H NMR (CDCl₃): δ 0.10 (s, 3H), 0.12 (s, 3H), 0.88 (s, 9H), 1.31 (d, J = 6.2 Hz, 3H), 2.10 (t, J = 2.6 Hz, 1H), 2.39 (s, 3H), 3.06–3.19 (m, 2H), 3.25 (t, J = 2.9 Hz, 1H), 4.32–4.39 (m, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.38–7.44 (m, 2H), 10.19 (brs, 1H). ¹³C NMR (CDCl₃): δ -5.34, -4.09, 17.7, 21.4, 22.3, 25.5, 29.6, 53.4, 60.98, 64.6, 71.7, 78.6, 121.1, 124.6, 127.4, 128.6, 137.1, 138.8, 167.2, 175.9.

HRMS: m/z = 416.1954, calcd. for C₂₂H₃₂N₂OSSi, found 416.1971 [M⁺].

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-2-oxo-4-(prop-2-yn-1-yl)-N-(p-tolyl)azetidine-1-carbothioamide (3e).

Yield: 148 mg (95%); colourless liquid. IR (Neat): 829, 1076, 1282, 1462, 1541, 1600, 1728, 1770, 2926, 3313 cm⁻¹. ¹H NMR (CDCl₃): δ 0.07 (s, 3H), 0.08 (s, 3H), 0.85 (s, 9H), 1.28 (d, J = 6.2 Hz, 3H), 2.06 (t, J = 2.6 Hz, 1H), 2.34 (s, 3H), 3.08–3.14 (m, 2H), 3.21 (t, J = 2.7 Hz, 1H), 4.30–4.39 (m, 1H), 4.50–4.58 (m, 1H), 7.17 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 10.11 (brs, 1H). ¹³C NMR (CDCl₃): δ -5.32, -4.05, 17.7, 21.1, 21.4, 22.3, 25.5, 53.4, 61.0, 64.6, 71.7, 78.7, 124.2, 129.4, 134.6, 136.5, 167.2, 176.1. HRMS: m/z = 416.1954, calcd. for C₂₂H₃₂N₂O₂SSi, found 416.1965 [M⁺].

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-N-(2-chlorophenyl)-2-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide (3f).

Yield: 150 mg (92%); white solid; mp 95–96°C; IR (KBr): 766, 1219, 1319, 1520, 1594, 1756, 2403, 2892, 3303 cm⁻¹. ¹H NMR (CDCl₃): δ 0.08 (s, 3H), 0.10 (s, 3H), 0.85 (s, 9H), 1.30 (d, J = 6.3 Hz, 3H), 2.08 (s, 1H), 3.05–3.22 (m, 2H), 3.25 (s, 1H), 4.32–4.42 (m, 1H), 4.56–4.59 (m, 1H), 7.17–7.33 (m, 2H), 7.45 (d, J = 8.3 Hz, 1H), 8.38 (d, J = 8.3 Hz, 1H), 10.45 (brs, 1H). ¹³C NMR (CDCl₃): δ -5.24, -4.15, 17.7, 21.3, 22.4, 25.6, 53.4, 61.1, 64.6, 71.8, 78.5, 125.7, 126.8,
127.1, 129.5, 134.5, 166.8, 175.7. HRMS: \(m/z = 437.1486 \), calcd. for \(\text{C}_{21}\text{H}_{30}\text{N}_{2}\text{O}_{2}\text{ClSSi} \), found 437.1480 \([\text{M+H}]^+\).

\((3S,4R)-3-((R)-1-((\text{tert-butyldimethylsilyl})\text{oxy})\text{ethyl})-\text{N}-(\text{3-chlorophenyl})-2\text{-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide} \) (3g).

Yield: 150 mg (92%); colourless liquid. IR (Neat): 831, 1078, 1128, 1290, 1325, 1477, 1541, 1666, 1749, 2203, 2943, 3435 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 0.08 (s, 3H), 0.10 (s, 3H), 0.85 (s, 9H), 1.28 (d, \(J = 6.3 \) Hz, 3H), 2.08 (t, \(J = 2.3 \) Hz, 1H), 3.02–3.18 (m, 2H), 3.24 (t, \(J = 2.7 \) Hz, 1H), 4.30–4.42 (m, 1H), 4.52–4.58 (m, 1H), 7.22 (d, \(J = 8.1 \) Hz, 1H), 7.31 (d, \(J = 8.1 \) Hz, 1H), 7.45 (d, \(J = 8.1 \) Hz, 1H), 7.72 (s, 1H), 10.22 (brs, 1H). \(^{13}\)C NMR (CDCl\(_3\)): \(\delta \) 5.34, 4.06, 17.7, 21.3, 22.3, 25.5, 53.5, 61.1, 64.6, 71.8, 78.4, 121.9, 123.9, 126.5, 129.8, 134.4, 138.3, 167.3, 175.8.

HRMS: \(m/z = 436.1408 \), calcd. for \(\text{C}_{21}\text{H}_{29}\text{ClN}_{2}\text{O}_{2}\text{SSi} \), found 436.1433 \([\text{M+H}]^+\).

\((3S,4R)-3-((R)-1-((\text{tert-butyldimethylsilyl})\text{oxy})\text{ethyl})-\text{N}-(\text{3-chlorophenyl})-2\text{-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide} \) (3h).

Yield: 133 mg (85%); colourless liquid. IR (Neat): 835, 1066, 1143, 1257, 1354, 1462, 1537, 1766, 2090, 2926, 3313 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 0.01 (s, 3H), 0.06 (s, 3H), 0.82 (s, 9H), 1.25 (d, \(J = 6.3 \) Hz, 3H), 2.04 (t, \(J = 2.6 \) Hz, 1H), 3.02–3.20 (m, 3H), 3.47 (t, \(J = 5.2 \) Hz, 2H), 4.26–4.34 (m, 1H), 4.46–4.52 (m, 1H), 4.73 (dd, \(J = 5.2 \) & 15.0 Hz, 1H), 4.86 (dd, \(J = 5.2 \) & 15.0 Hz, 1H), 7.27–7.38 (m, 5H), 8.75 (brs, 1H). \(^^{13}\)C NMR (CDCl\(_3\)): \(\delta \) -5.14, -3.94, 17.8, 21.6, 22.5, 25.7, 48.5, 53.5, 61.2, 64.7, 71.8, 78.8, 127.99, 128.0, 128.9, 136.5, 167.1, 177.99. HRMS: \(m/z = 416.1954 \), calcd. for \(\text{C}_{22}\text{H}_{32}\text{N}_{2}\text{O}_{2}\text{SSi} \), found 416.1964 \([\text{M+H}]^+\).

\((3S,4R)-3-((R)-1-((\text{tert-butyldimethylsilyl})\text{oxy})\text{ethyl})-\text{N}-(\text{4-methoxyphenyl})-2\text{-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide} \) (3i).
Yield: 142 mg (88%); yellow solid; mp 70–73°C. IR (KBr): 768, 834, 1025, 1134, 1251, 1316, 1382, 1521, 1607, 1757, 2857, 2942, 3296 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.08 (s, 3H), 0.10 (s, 3H), 0.87 (s, 9H), 1.29 (d, \(J = 6.4\) Hz, 3H), 2.08 (t, \(J = 2.5\) Hz, 1H), 3.12–3.15 (m, 2H), 3.23 (t, \(J = 2.7\) Hz, 1H), 3.82 (s, 3H), 4.34–4.39 (m, 1H), 4.54–4.57 (m, 1H), 6.91 (d, \(J = 8.8\) Hz, 2H), 7.42 (d, \(J = 8.8\) Hz, 2H), 10.0 (brs, 1H). \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) -5.34, -4.04, 17.7, 21.5, 22.3, 25.5, 53.4, 55.4, 61.1, 64.6, 71.7, 78.7, 114.1, 126.1, 129.98, 158.1, 167.2, 176.5. HRMS: m/z = 433.1981, calcd. for C\(_{22}\)H\(_{33}\)N\(_2\)O\(_3\)SSi, found 433.1976 [M+H]^+.

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-N-(4-fluorophenyl)-2-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide (3j).

Yield: 137 mg (87%); white solid; mp 83–89°C. IR (KBr): 763, 836, 1063, 1140, 1219, 1319, 1378, 1520, 1615, 1757, 2892, 3021, 3304 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.08 (s, 3H), 0.10 (s, 3H), 0.86 (s, 9H), 1.29 (d, \(J = 6.4\) Hz, 3H), 2.08 (t, \(J = 2.7\) Hz, 1H), 3.06–3.18 (m, 2H), 3.24 (t, \(J = 2.7\) Hz, 1H), 4.34–4.40 (m, 1H), 4.55–4.58 (m, 1H), 7.08 (t, \(J = 8.6\) Hz, 2H), 7.50 (dd, \(J = 8.8, 3.9\) Hz, 2H), 10.11 (brs, 1H). \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) -5.37, -4.04, 17.7, 21.4, 22.3, 25.5, 53.4, 61.1, 64.6, 71.7, 78.5, 115.7 (d, \(^2J_{C,F} = 23.1\) Hz), 126.3 (d, \(^3J_{C,F} = 8.5\) Hz), 133.0 (d, \(^4J_{C,F} = 3.1\) Hz), 160.8 (d, \(^1J_{C,F} = 246\) Hz), 167.3, 176.5. HRMS: m/z = 421.1781, calcd. for C\(_{21}\)H\(_{30}\)N\(_2\)O\(_2\)SSiF, found 421.1776 [M+H]^+.

(3S,4R)-3-((R)-1-((tert-butyldimethylsilyl)oxy)ethyl)-N-(4-cyanophenyl)-2-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide (3k).
Yield: 146 mg (91%); white solid; mp 138–140°C. IR (KBr): 835, 1070, 1120, 1215, 1330, 1357, 1499, 1620, 1765, 2218, 2988, 3307 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.06 (s, 3H), 0.09 (s, 3H), 0.82 (s, 9H), 1.28 (d, $J = 6.4$ Hz, 3H), 2.08 (t, $J = 2.5$ Hz, 1H), 3.05–3.21 (m, 2H), 3.27 (t, $J = 2.5$ Hz, 1H), 4.55–4.58 (m, 1H), 7.66 (d, $J = 8.3$ Hz, 2H), 7.85 (d, $J = 8.3$ Hz, 2H), 10.46 (brs, 1H). 13C NMR (CDCl$_3$): δ -5.39, -4.06, 17.6, 21.2, 22.2, 25.4, 53.2, 61.1, 64.6, 71.9, 78.2, 109.1, 118.4, 122.9, 132.9, 141.3, 144.7, 167.4, 175.2. HRMS: m/z = 428.1828, calcd. for C$_{22}$H$_{30}$N$_3$O$_2$SSi, found 428.1828 [M+H]$^+$.

(3$S,4R$)-3-((R)-1-((tert-butyldimethylsilyloxy)ethyl)-2-oxo-4-(prop-2-yn-1-yl)-N-(4-(trifluoromethyl)phenyl)azetidine-1-carbothioamide (3l).

Yield: 151 mg (86%); white solid; mp 140–142°C. IR (KBR): 764, 837, 1065, 1124, 1256, 1315, 1368, 1549, 1611, 1759, 2943, 3302 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.07 (s, 3H), 0.10 (s, 3H), 0.84 (s, 9H), 1.29 (d, $J = 6.4$ Hz, 3H), 2.09 (t, $J = 2.7$ Hz, 1H), 3.05–3.20 (m, 2H), 3.27 (t, $J = 2.8$ Hz, 1H), 3.36–3.40 (m, 1H), 4.57–4.60 (m, 1H), 7.64 (d, $J = 8.5$ Hz, 2H), 7.80 (d, $J = 8.5$ Hz, 2H), 10.38 (brs, 1H). 13C NMR (CDCl$_3$): δ -5.39, -4.06, 17.7, 21.3, 22.2, 25.5, 53.5, 61.1, 64.6, 71.9, 78.4, 123.3, 123.8 (q, 1J$_{CF3} = 272$ Hz), 126.0 (d, 3J$_{C-F} = 3.8$ Hz), 127.97 (q, 2J$_{C-F} = 33.5$ Hz), 140.3, 144.7, 167.4, 175.6. HRMS: m/z = 471.1749, calcd. for C$_{22}$H$_{30}$N$_2$O$_2$SSiF$_3$, found 471.1748 [M+H]$^+$.

(3$S,4R$)-3-((R)-1-((tert-butyldimethylsilyloxy)ethyl)-N-(4-nitrophenyl)-2-oxo-4-(prop-2-yn-1-yl)azetidine-1-carbothioamide (3m).
Yield: 137 mg (82%); brown solid; mp 102–104°C. IR (KBr): 768, 845, 1008, 1117, 1225, 1303, 1422, 1525, 1583, 1760, 2862, 2942, 3298 cm\(^{-1}\). 1H NMR (CDCl\(_3\)): δ 0.06 (s, 3H), 0.09 (s, 3H), 0.82 (s, 9H), 1.29 (d, \(J = 6.1\) Hz, 3H), 2.09 (t, \(J = 2.4\) Hz, 1H), 3.02–3.07 (m, 1H), 3.15–3.21 (m, 1H), 3.29 (t, \(J = 3.1\) Hz, 1H), 3.36–3.40 (m, 1H), 4.57–4.60 (m, 1H), 7.93 (d, \(J = 9.1\) Hz, 2H), 8.25 (d, \(J = 9.1\) Hz, 2H), 10.6 (brs, 1H). \(^{13}\)C NMR (CDCl\(_3\)): δ -5.39, -4.05, 17.6, 21.1, 22.2, 25.4, 53.6, 61.1, 64.6, 71.97, 78.1, 122.5, 124.6, 143.1, 144.7, 167.5, 175.2. HRMS: m/z = 448.1726, calcd. for C\(_{21}\)H\(_{30}\)N\(_3\)O\(_4\)SSi, found 448.1721 [M+H]\(^+\).
Table 1. Optimization conditions for the iodocyclization reaction of 3a.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Electrophile</th>
<th>Time (h)</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CH(_2)Cl(_2)</td>
<td>I(_2) (1.0)</td>
<td>36.0</td>
<td>38</td>
</tr>
<tr>
<td>2.</td>
<td>CH(_2)Cl(_2)</td>
<td>I(_2) (1.25)</td>
<td>28.0</td>
<td>56</td>
</tr>
<tr>
<td>3.</td>
<td>CH(_2)Cl(_2)</td>
<td>I(_2) (1.5)</td>
<td>8.0</td>
<td>66</td>
</tr>
<tr>
<td>4.</td>
<td>CHCl(_3)</td>
<td>I(_2) (1.5)</td>
<td>8.0</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>THF</td>
<td>I(_2) (1.5)</td>
<td>9.5</td>
<td>46</td>
</tr>
<tr>
<td>6.</td>
<td>CH(_3)CN</td>
<td>I(_2) (1.5)</td>
<td>9.0</td>
<td>42</td>
</tr>
<tr>
<td>7.</td>
<td>Toluene</td>
<td>I(_2) (1.5)</td>
<td>14.0</td>
<td>56</td>
</tr>
<tr>
<td>8.</td>
<td>DMF</td>
<td>I(_2) (1.5)</td>
<td>26.0</td>
<td>7</td>
</tr>
<tr>
<td>9.</td>
<td>DMSO</td>
<td>I(_2) (1.5)</td>
<td>6.5</td>
<td>29</td>
</tr>
<tr>
<td>10.</td>
<td>CH(_3)OH</td>
<td>I(_2) (1.5)</td>
<td>24.0</td>
<td>19</td>
</tr>
<tr>
<td>11.</td>
<td>CH(_2)Cl(_2)</td>
<td>NIS (1.5)</td>
<td>1</td>
<td>12(^c)</td>
</tr>
<tr>
<td>12.</td>
<td>CH(_2)Cl(_2)</td>
<td>ICl (1.5)</td>
<td>6</td>
<td>35</td>
</tr>
</tbody>
</table>

\(^a\) All iodocyclization reactions were carried out at r.t. on 0.114 mmol of 3a.

\(^b\) Isolated yields.

\(^c\) Reaction resulted in formation of multiple spots.
Typical procedure for the synthesis of 3-thia-1-dethiacephem (4):

To a solution of 3 (50 mg, 1 equiv.) in CH$_2$Cl$_2$ (2 mL) was added I$_2$ (1.5 equiv.) at room temperature. After stirring at this temperature (6 to 12 h), the reaction mixture was extracted with CH$_2$Cl$_2$ and washed with saturated Na$_2$S$_2$O$_3$ and NaHCO$_3$. The organic phase was washed with brine, dried over Na$_2$SO$_4$, filtered and evaporated in vacuo. The residue was chromatographed on silica gel using ether/hexane (2:8) as eluent to give corresponding product 3-Thia-1-dethiacephems 4a–m.

The isolated yield and the spectra data for 4a-4m are as follows:

3-Thia-1-dethiacephem (4a).

Yield: 42 mg (66%); white solid; mp 137–139°C. IR (KBr): 777, 835, 1068, 1122, 1211, 1336, 1483, 1585, 1620, 1778, 2929 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.11 (s, 3H), 0.12 (s, 3H), 0.91 (s, 9H), 1.31 (d, $J = 6.3$ Hz, 3H), 2.38 (t, $J = 14.3$ Hz, 1H), 3.18 (d, $J = 3.3$ Hz, 1H), 3.47 (dd, $J = 3.3$ & 14.8 Hz, 1H), 4.00 (dt, $J = 2.7$ & 12.1 Hz, 1H), 4.28–4.36 (m, 1H), 6.36 (d, $J = 1.4$ Hz, 1H), 6.82 (d, $J = 8.3$ Hz, 2H), 7.26 (d, $J = 8.3$ Hz, 2H). 13C NMR (CDCl$_3$): δ -4.91, -4.03, 18.0, 22.7, 25.8, 25.98, 29.8, 38.7, 52.0, 65.5, 66.3, 74.3, 122.5, 129.1, 130.0, 134.7, 140.96, 145.5, 163.3. HRMS: m/z = 562.0374, calcd. for C$_{21}$H$_{28}$ClIN$_2$O$_2$SSi, found 562.0401 [M$^+$].
Yield: 46 mg (70%); white solid; mp 168–170°C. IR (KBr): 776, 1015, 1138, 1357, 1460, 1597, 1640, 1790, 2950 cm⁻¹. ¹H NMR (CDCl₃): δ 0.11 (s, 3H), 0.12 (s, 3H), 0.91 (s, 9H), 1.31 (d, J = 6.4 Hz, 3H), 2.39 (t, J = 14.9 Hz, 1H), 3.15 (dd, J = 2.7 & 5.5 Hz, 1H), 3.42 (dd, J = 3.2 & 14.9 Hz, 1H), 3.99 (dt, J = 2.9 & 12.0 Hz, 1H), 4.27–4.36 (m, 1H), 6.32 (d, J = 1.1 Hz, 1H), 6.87 (d, J = 7.6 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H). ¹³C NMR (CDCl₃): δ -4.89, -4.01, 18.0, 22.7, 25.9, 29.8, 38.8, 52.1, 65.6, 66.2, 73.9, 121.1, 124.7, 128.98, 135.1, 140.3, 147.02, 163.3. HRMS: m/z = 528.0764, calcd. for C₂₁H₂₉N₂O₂SSi, found 528.0740 [M⁺].

3-Thia-1-dethiacephem (4c).

Yield: 43 mg (66%); white solid; mp 192°C. IR (KBr): 761, 1113, 1213, 1356, 1590, 1627, 1785, 2404, 2943, 3050 cm⁻¹. ¹H NMR (CDCl₃): δ 0.13 (s, 3H), 0.15 (s, 3H), 0.93 (s, 9H), 1.31 (d, J = 6.1 Hz, 3H), 2.15 (s, 3H), 2.35–2.42 (m, 1H), 3.18 (t, J = 2.6 Hz, 1H), 3.45 (dd, J = 3.2 & 14.9 Hz, 1H), 3.95–4.05 (m, 1H), 4.30–4.40 (m, 1H), 6.31 (d, J = 1.6 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 7.04 (t, J = 7.1 Hz, 1H), 7.10–7.20 (m, 2H). ¹³C NMR (CDCl₃): δ -5.07, -4.11, 17.7, 17.9, 22.6, 25.8, 38.5, 51.5, 65.2, 66.2, 73.6, 120.1, 124.6, 126.2, 128.98, 130.4, 135.1, 139.6, 145.7, 163.3. HRMS: m/z = 543.0998, calcd. for C₂₂H₃₂N₂O₂SSi, found 543.0993 [M+H]⁺.

3-Thia-1-dethiacephem (4d).
Yield: 36 mg (55%); white solid; mp 162–164°C. IR (KBr): 777, 1010, 1134, 1357, 1459, 1597, 1633, 1791, 2953 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta 0.12\) (s, 3H), \(0.13\) (s, 3H), \(0.92\) (s, 9H), \(1.32\) (d, \(J = 6.1\) Hz, 3H), \(2.30–2.44\) (m, 4H), \(3.16\) (dd, \(J = 2.6\) & \(5.5\) Hz, 1H), \(3.44\) (dd, \(J = 3.2\) & \(14.9\) Hz, 1H), \(4.00\) (dt, \(J = 3.2\) & \(11.9\) Hz, 1H), \(6.33\) (d, \(J = 1.7\) Hz, 1H), \(6.66–6.73\) (m, 2H), \(6.94\) (d, \(J = 7.6\) Hz, 1H), \(7.20\) (t, \(J = 7.6\) Hz, 1H). \(^13\)C NMR (CDCl\(_3\)): \(\delta -4.89\), -4.03, 17.9, 20.97, 22.6, 25.8, 38.7, 51.98, 65.5, 66.1, 73.7, 120.8, 129.5, 134.1, 135.2, 139.9, 146.9, 163.1. HRMS: \(m/z = 542.0920\), calcd. for \(C_{22}H_{31}IN_2O_2SSi\), found 542.0906 [\(M^+\)].

3-Thia-1-dethiacephem (4e).

Yield: 41 mg (63%); white solid; mp 89–90°C. IR (KBr): 777, 833, 1068, 1139, 1251, 1352, 1590, 1627, 1683, 1790, 2929 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta 0.11\) (s, 3H), \(0.12\) (s, 3H), \(0.91\) (s, 9H), \(1.31\) (d, \(J = 6.2\) Hz, 3H), \(2.30–2.46\) (m, 4H), \(3.15\) (dd, \(J = 2.7\) & \(5.4\) Hz, 1H), \(3.43\) (dd, \(J = 3.3\) & \(15.3\) Hz, 1H), \(3.97\) (dt, \(J = 3.3\) & \(12.2\) Hz, 1H), \(4.27–4.35\) (m, 1H), \(5.31\) (d, \(J = 1.8\) Hz, 1H), \(6.77\) (d, \(J = 8.5\) Hz, 2H), \(7.10\) (d, \(J = 8.5\) Hz, 2H). \(^13\)C NMR (CDCl\(_3\)): \(\delta -4.99\), -4.11, 17.9, 20.97, 22.6, 25.8, 38.7, 51.98, 65.5, 66.1, 73.7, 120.8, 129.5, 134.1, 135.2, 139.9, 144.4, 163.1. HRMS: \(m/z = 542.0920\), calcd. for \(C_{22}H_{31}IN_2O_2SSi\), found 542.0912 [\(M^+\)].

3-Thia-1-dethiacephem (4f).

Yield: 40 mg (62%); white solid; mp 170°C. IR (KBr): 762, 1215, 1360, 1467, 1622, 1789, 2403, 2941, 3019 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta 0.12\) (s, 3H), \(0.14\) (s, 3H), \(0.92\) (s, 9H), \(1.32\) (d, \(J = 6.2\) Hz, 3H), \(2.39\) (td, \(J = 2.7\) & \(5.7\) Hz, 1H), \(3.20\) (t, \(J = 2.7\) Hz, 1H), \(3.45\) (dd, \(J = 3.3\) & \(12.9\) Hz, 1H), \(4.00–4.08\) (m, 1H), \(4.30–4.40\) (m, 1H), \(6.34\) (s, 1H), \(6.89\) (dd, \(J = 2.7\) & \(7.5\) Hz, 1H), \(7.05\) (td, \(J = 2.7\) & \(7.5\) Hz, 1H), \(7.20\) (td, \(J = 2.7\) & \(7.5\) Hz, 1H), \(7.37\) (dd, \(J = 2.7\) & \(7.5\) Hz, 1H).
13C NMR (CDCl$_3$): δ -5.07, -4.14, 17.9, 22.6, 25.7, 38.4, 51.6, 65.2, 66.3, 74.0, 122.2, 125.4, 127.2, 129.8, 134.6, 142.0, 144.1, 163.1. HRMS: $m/z = 563.0552$, calcd. for C$_{21}$H$_{29}$N$_2$O$_2$ClISSi, found 563.0447 [M+H]$^+$.

3-Thia-1-dethiacephem (4g).

Yield: 46 mg (72%); white solid; mp 186–188°C. IR (KBr): 763, 1215, 1457, 1629, 1789, 2406, 2961, 3018 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.12 (s, 6H), 0.92 (s, 9H), 1.32 (d, $J = 6.2$ Hz, 3H), 2.29-2.48 (m, 1H), 3.18 (dd, $J = 2.7$ & 5.7 Hz, 1H), 3.44 (dd, $J = 3.3$ & 14.9 Hz, 1H), 4.01 (dt, $J = 3.3$ & 12.9 Hz, 1H), 4.26–4.38 (m, 1H), 6.37 (d, $J = 1.7$ Hz, 1H), 6.72–6.82 (m, 1H), 6.89 (t, $J = 2$ Hz, 1H), 7.05–7.12 (m, 1H), 7.20 (d, $J = 8.2$ Hz, 1H). 13C NMR (CDCl$_3$): δ -5.05, -4.15, 17.9, 22.6, 25.1, 38.5, 51.8, 65.3, 66.2, 74.3, 119.4, 121.2, 124.6, 129.9, 134.5, 141.2, 148.1, 163.2. HRMS: $m/z = 563.0552$, calcd. for C$_{21}$H$_{29}$N$_2$O$_2$ClISSi, found 563.0447 [M+H]$^+$.

3-Thia-1-dethiacephem (4h).

Yield: 27 mg (41%); white solid; mp 106–108°C. IR (KBr): 770, 1073, 1139, 1215, 1331, 1461, 1628, 1780, 2402, 2892, 3021 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.10 (s, 3H), 0.11 (s, 3H), 0.92 (s, 9H), 1.30 (d, $J = 6.3$ Hz, 3H), 2.22-2.40 (m, 1H), 3.08 (d, $J = 6.3$ Hz, 1H), 3.44 (d, $J = 6.3$ Hz, 1H), 3.93 (dd, $J = 3.2$ & 14.9 Hz, 1H), 4.25–4.30 (m, 1H), 4.58 (d, $J = 6.3$ Hz, 1H), 4.72 (d, $J = 6.3$ Hz, 1H), 6.47 (s, 1H), 7.18-7.36 (m, 5H). 13C NMR (CDCl$_3$): δ -5.05, -4.12, 17.9, 22.6, 25.7, 38.95, 51.8, 54.3, 65.5, 65.8, 74.2, 126.7, 127.4, 128.3, 134.7, 138.8, 139.7, 163.2. HRMS: $m/z = 543.0998$, calcd. For C$_{22}$H$_{32}$N$_2$O$_2$ISSi, found 543.0993 [M+H]$^+$.

3-Thia-1-dethiacephem (4i).
Yield: 42 mg (65%); yellow solid; mp 98-100°C. IR (KBr): 762, 833, 1071, 1139, 1243, 1357, 1503, 1621, 1786, 2943 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta 0.12\) (s, 3H), 0.13 (s, 3H), 0.92 (s, 9H), 1.32 (d, \(J = 6.1\) Hz, 3H), 2.39 (t, \(J = 14.1\) Hz, 1H), 3.15 (dd, \(J = 2.7 \& 5.6\) Hz, 1H), 3.45 (dd, \(J = 3.2 \& 14.6\) Hz, 1H), 3.79 (s, 3H), 3.98 (dt, \(J = 2.8 \& 11.99\) Hz, 1H), 4.28–4.34 (m, 1H), 6.33 (d, \(J = 1.9\) Hz, 1H), 6.81–6.87 (m, 4H). \(^1\)C NMR (CDCl\(_3\)): \(\delta -5.02\), -4.15, 17.9, 22.6, 25.7, 38.7, 51.9, 55.3, 65.5, 66.0, 73.7, 114.1, 122.1, 135.1, 139.99, 140.1, 156.7, 163.1. HRMS: m/z = 559.0948, calcd. for C\(_{22}\)H\(_{32}\)IN\(_2\)O\(_2\)Si, found 559.0942 [M+H]\(^+\).

3-Thia-1-dethiacephem (4j).

Yield: 48 mg (74%); white solid; mp 78–80°C. IR (KBr): 755, 838, 1093, 1215, 1354, 1502, 1623, 1786, 2956, 3019 cm\(^{-1}\). \(^1\)H NMR (CDCl\(_3\)): \(\delta 0.12\) (s, 3H), 0.13 (s, 3H), 0.92 (s, 9H), 1.32 (d, \(J = 6.3\) Hz, 3H), 2.39 (t, \(J = 14.3\) Hz, 1H), 3.18 (dd, \(J = 2.7 \& 5.5\) Hz, 1H), 3.45 (dd, \(J = 3.4 \& 14.5\) Hz, 1H), 3.99 (dt, \(J = 3.1 \& 11.9\) Hz, 1H), 4.29–4.35 (m, 1H), 6.36 (d, \(J = 1.9\) Hz, 1H), 6.85 (dd, \(J = 3.9 \& 8.8\) Hz, 2H), 7.00 (t, \(J = 8.6\) Hz, 2H). \(^1\)C NMR (CDCl\(_3\)): \(\delta -5.04\), -4.13, 17.9, 22.6, 25.7, 38.6, 51.9, 65.4, 66.1, 74.1, 115.65 (d, \(2J_{C,F} = 23\) Hz), 122.4 (d, \(3J_{C,F} = 7.7\) Hz), 134.7, 140.8, 142.9 (d, \(4J_{C,F} = 2.3\) Hz), 159.99 (d, \(1J_{C,F} = 242\) Hz), 163.2. HRMS: m/z = 547.0748, calcd. for C\(_{21}\)H\(_{29}\)FIN\(_2\)O\(_2\)Si, found 547.0742 [M+H]\(^+\).

3-Thia-1-dethiacephem (4k).
Yield: 50 mg (77%); colourless liquid. IR (KBr): 764, 837, 1017, 1136, 1246, 1360, 1460, 1588, 1629, 1725, 1793, 2225, 2935, 3409 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.12 (s, 6H), 0.91 (s, 9H), 1.31 (d, $J = 6.4$ Hz, 3H), 2.40 (t, $J = 14.4$ Hz, 1H), 3.21 (dd, $J = 2.0$ & 2.9 Hz, 1H), 3.47 (dd, $J = 3.4$ & 14.7 Hz, 1H), 4.03 (dt, $J = 3.2$ & 11.99 Hz, 1H), 4.31–4.36 (m, 1H), 6.40 (d, $J = 1.5$ Hz, 1H), 6.96 (d, $J = 8.3$ Hz, 2H), 7.60 (d, $J = 8.3$ Hz, 2H). 13C NMR (CDCl$_3$): δ -5.09, -4.16, 17.9, 22.5, 25.7, 38.4, 51.8, 65.2, 66.3, 74.8, 107.8, 119.0, 121.9, 133.1, 133.9, 141.3, 150.9, 163.2. HRMS: m/z = 554.0794, calcd. for C$_{22}$H$_{29}$IN$_3$O$_2$SSi, found 554.0793 [M+H]$^+$.

3-Thia-1-dethiacephem (4I).

Yield: 47 mg (75%); white solid; mp 80-82°C. IR (KBr): 762, 838, 1016, 1066, 1121, 1321, 1413, 1607, 1791, 2942, 3011 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.12 (s, 3H), 0.13 (s, 3H), 0.92 (s, 9H), 1.32 (d, $J = 6.3$ Hz, 3H), 2.40 (t, $J = 14.4$ Hz, 1H), 3.20 (dd, $J = 2.5$ & 5.1 Hz, 1H), 3.46 (dd, $J = 3.4$ & 14.5 Hz, 1H), 4.03 (dt, $J = 3.02$ & 11.95 Hz, 1H), 4.30–4.36 (m, 1H), 6.38 (d, $J = 1.7$ Hz, 1H), 6.97 (d, $J = 8.3$ Hz, 2H), 7.56 (d, $J = 8.4$ Hz, 2H). 13C NMR (CDCl$_3$): δ -5.09, -4.16, 17.9, 22.6, 25.7, 38.5, 51.8, 65.3, 66.2, 74.4, 121.3, 124.23 (q, 1J$_{CF} = 272$ Hz), 126.16 (d, 3J$_{CF} = 3.1$ Hz), 126.53 (q, 2J$_{CF} = 33$ Hz), 134.3, 141.1, 149.97, 163.2. HRMS: m/z = 597.0716, calcd. for C$_{22}$H$_{29}$F$_3$IN$_3$O$_2$SSi, found 597.0710 [M+H]$^+$.

3-Thia-1-dethiacephem (4m).

Yield: 51 mg (80%); white solid; mp 80-82°C. IR (KBr): 764, 843, 1067, 1215, 1340, 1470, 1586, 1626, 1791, 2943, 3021 cm$^{-1}$. 1H NMR (CDCl$_3$): δ 0.12 (s, 3H), 0.13 (s, 3H), 0.92 (s, 9H), 1.31 (d, $J = 6.1$ Hz, 3H), 2.41 (t, $J = 14.4$ Hz, 1H), 3.23 (dd, $J = 2.9$ & 4.6 Hz, 1H), 3.47 (dd, $J = 3.4$ & 14.5 Hz, 1H), 4.05 (dt, $J = 3.1$ & 11.99 Hz, 1H), 4.31–4.37 (m, 1H), 6.41 (d, $J = 1.5$ Hz, 1H), 6.99 (d, $J = 8.8$ Hz, 2H), 8.19 (d, $J = 8.8$ Hz, 2H). 13C NMR (CDCl$_3$): δ -5.09, -4.16, 17.9, 22.5, 25.7, 38.3, 51.8, 65.2, 66.3, 74.9, 121.7, 124.9, 133.8, 141.5, 144.5, 152.9, 163.2. HRMS: m/z = 574.0693, calcd. for C$_{22}$H$_{29}$IN$_3$O$_4$SSi, found 574.0687 [M+H]$^+$.

S16
Supporting Information

Synthesis of 3-Thia-1-dethiacephems via Regioselective Iodocyclization Reaction

Dinesh R. Garud, a,1 Navnath D. Rode, b Sagar R. Bhat, a,1 Vinod S. Ranpise, a,1 Ramesh R. Joshi, b Rohini R. Joshi b, Mamoru Koketsuc.

aDepartment of Chemistry, Sir Parashurambhau College, Tilak Road, Pune 411 030, Maharashtra, India.
bDivision of Organic Chemistry, National Chemical Laboratory, Pune 411 008, Maharashtra, India.
cDepartment of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
E-mail: ddgarud@gmail.com, Tel Ph.: +91-9389344438.

1 Affiliated to Savitribai Phule Pune University (formerly University of Pune).
TBSO
Me

N
N

H
H

3e

HMQC NMR
Chloroform-d
TBSO
Me
H
H
I
N
S
N
O
N
4a
Ph
Cl

Chloroform-d

2.06 1.92 0.89 1.00 1.00 1.01 1.00 1.06 1.00 4.05 9.59 6.00
4e