Supporting Information
for DOI: 10.1055/s-0033-1341045
© Georg Thieme Verlag KG Stuttgart · New York 2014
Supporting Information

Domino Access to Yne-functionalized Benzoisoindolines from Triynes

Lidong Li, Qiong Hu, Pingping Zhou, Haifeng Xie, Xiaorong Zhang,
Hao Zhang, Hua Wang, and Yimin Hu*

School of Chemistry and Materials Science, Anhui Normal University,
Wuhu, Anhui 241000, China E-mail: yiminhu@mail.ahnu.edu.cn

Contents

1. General Experimental Procedures ...S2

2. X-Ray Structure for 2h ..S3

3. 1H NMR & 13C NMR Spectra for New CompoundsS4
1. General experimental procedures

All the catalytic reactions were performed under an argon atmosphere using the over-dried Schlenk flask. The chemicals were purchased from Alfa Aesar and Acros Chemicals. All solvents and materials were pre-dried, redistilled or recrystallized before use. 1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were recorded on a Bruker Avance 300 spectrometer with CDCl$_3$ as the solvent. Chemical shifts are reported in ppm by assigning TMS resonance in the 1H NMR spectra as 0.00 ppm and CDCl$_3$ resonance in the 13C spectra as 77.0 ppm. All coupling constants (J values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 300–400 mesh. Melting points were determined using a Gallenkamp melting point apparatus and are uncorrected. The FT-IR spectra were recorded from KBr pellets or thin film from CHCl$_3$ on the NaCl window in the 4000–400 cm$^{-1}$ ranges on a Nicolet 5DX spectrometer. All HRMS spectra were recorded using EI or APCI at 70 eV. X-ray Crystallography diffraction data of 2h was collected at room temperature with a Bruker SMART Apex CCD diffractometer with Mo-Kα radiation ($\lambda = 0.71073$ Å) with a graphite monochromator using the ω-scan mode. Data reductions and absorption corrections were performed with SAINT and SADABS software, respectively. The structure was solved by direct methods and refined on F^2 by full-matrix least squares using SHELXTL. All non-hydrogen atoms were treated anisotropically. The positions of hydrogen atoms were generated geometrically.

General procedures:

Preparation of Triynes:

![Triyne Preparation Diagram]

Triyne substrates were prepared in one step using the Cadiot-Chodkiewicz coupling reaction. To a 30% n-BuNH$_2$ (3 mL/1 mmol of substrate) aqueous solution containing CuCl (1 equiv), and NH$_2$OH·HCl (0.1 equiv) was added diyne at 0 °C. Bromoalkyne (1.5 equiv) was then added dropwise over 5 min and the reaction mixture was stirred at 0 °C for additional 5 min. After aqueous work up, the crude product was purified by column chromatography on silica gel to afford triynes in moderate to good yields.

Preparation of aryl halides: Typical procedure: Triyne 1a-1w (1.0 equiv.) and CuI (10 mol %) were added to a degassed solution of CH$_3$CN (5 mL) and the mixture was stirred at room temperature for half an hour and then heated at 90 °C for 60 h. The reaction mixture was then cooled, quenched with water, and extracted with ethyl acetate (30 mL). The combined organic layers were washed with hydrochloric acid (5 %), sodium carbonate (5 %), and saturated sodium chloride solution, dried over MgSO$_4$, and...
concentrated. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 6:1) to give 2a-2w.

2. X-Ray Structure for 2h
3. 1H NMR & 13C NMR Spectra for New Compounds