Supporting Information (ESI)

Chemoselective Activation of Trimethylsilyl Enol Ether Functionalities in the Presence of Silyl-Protected Alcohols by Trimethylsilyl – Nonaflyl Exchange

Ekaterina V. Boltukhina, Andrey E. Sheshenev* and Ilya M. Lyapkalo

This article is dedicated to the memory of our colleague and friend Dr. Ilya Lyapkalo who passed away on September 10, 2010

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Flemingovo nam. 2, Czech Republic

a.sheshenev@imperial.ac.uk

Table of contents:
Picture of the apparatus for recondensation S2

1H and 13C NMR data for known compounds S3-S4

1H and 13C NMR spectra of new compounds S5-S17

To be published online
Figure 1. Apparatus for recondensation.
1H and 13C NMR data for known compounds

[2-Trimethylsilyloxy-3-methyl-6R-(1'-methyl-1'-trimethylsilyloxy)ethyl]-1,3-cyclohexadiene (1a)

1H NMR (400 MHz, CDCl$_3$): δ = 0.11 (s, 9H, TMS), 0.21 (s, 9H, TMS), 1.16 (s, 3H, Me-1’), 1.18 (s, 3H, Me-1’), 1.68 (d, $J = 2.0$, 3H, Me-3), 1.93–2.16 (m, 2H, H-5), 2.42 (ddd, $J = 13.8$, 8.8 and 3.4 Hz, 1H, H-6), 4.90 (d, $J = 3.4$ Hz, 1H, H-1), 5.53–5.55 (m, 1H, H-4).

13C NMR (100 MHz, CDCl$_3$): δ = 0.20, 2.60, 17.20; 27.26, 27.52, 27.68, 46.56, 76.46, 104.62, 123.51, 131.82, 149.93.

1,4-Bis(trimethylsilyloxy)cyclohex-1-ene (1b)

1H NMR (400 MHz, C$_6$D$_6$): δ = 0.11 (s, 9H, TMS), 0.17 (s, 9H, TMS), 1.73–1.78 (m, 2 H), 2.10–2.31 (m, 4 H), 3.84–3.90 (m, 1H, H-4), 4.79–4.81 (m, 1H, H-2).

13C NMR (100 MHz, C$_6$D$_6$): δ = 0.39, 0.42, 28.71, 32.29, 33.85, 67.63, 100.66, 150.44.

2,4-Bis(trimethylsilyloxy)-4-methylpent-1-ene (1c)

1H NMR (400 MHz, CDCl$_3$): δ = 0.11 (s, 9H, TMS), 0.20 (s, 9H, TMS), 1.27 (s, 6H, 2Me-3), 2.20 (s, 2H, H-3), 4.07 (m, 2H, H-1).

13C NMR (100 MHz, CDCl$_3$): δ = –0.79, 1.82, 29.12, 50.96, 72.93, 91.87, 156.12.

2,3-Bis(trimethylsilyloxy)-3-methylbut-1-ene (1d)

1H NMR (400 MHz, C$_6$D$_6$): δ = 0.17 (s, 9H, TMS), 0.22 (s, 9H, TMS), 1.43 (s, 6H, 2Me-3), 4.15 (d, $J = 1.0$ Hz, 1H, H-1), 4.69 (d, $J = 1.0$ Hz, 1H, H-1).

13C NMR (100 MHz, C$_6$D$_6$): δ = 0.18, 2.68, 29.17, 75.44, 87.00, 164.57.

3-(tert-Butyldimethylsilyloxy)-3-methyl-2-butanone (starting material for 1e)

1H NMR (400 MHz, CDCl$_3$): δ = 0.12 (s, 6H, 2Me-TBS), 0.91 (s, 9H, t-Bu-TBS), 1.33 (s, 6H, 2Me-3), 2.22 (s, 3H, Me-2).

13C NMR (100 MHz, CDCl$_3$): δ = –2.16, 18.23, 24.79, 25.92, 27.08, 80.13, 213.86.
3-tert-Butyldimethylsilyloxy-2-butanone (starting material for 1g)

1H NMR (400 MHz, CDCl$_3$): $\delta = 0.08$ (s, 6H, 2Me-TBS), 0.91 (s, 9H, t-Bu-TBS), 1.27 (d, $J = 6.8$ Hz, 3H, Me-3), 2.18 (s, 3H, Me-2), 4.11 (q, $J = 6.8$ Hz, 1H, H-3).
13C NMR (100 MHz, CDCl$_3$): $\delta = -4.92$, −4.58, 18.21, 20.81, 25.87, 75.19, 212.70.

2-Trimethylsilyloxy-3-tert-butyldimethylsilyloxybut-1-ene (1g)

1H NMR (400 MHz, C$_6$D$_6$): $\delta = 0.08$ (s, 3H, Me-TBS), 0.10 (s, 3H, Me-TBS), 0.18 (s, 9H, TMS), 1.00 (s, 9H, t-Bu-TBS), 1.38 (d, $J = 6.3$ Hz, 1H, Me-3), 4.15 (q, $J = 6.3$ Hz, 1H, H-3), 4.22 (br. s, 1H, H-1), 4.65 (br. s, 1H, H-1).
13C NMR (100 MHz, C$_6$D$_6$): $\delta = -4.80$, −4.66, 0.20, 18.48, 22.87, 26.11, 70.29, 87.99, 162.41.

2-(tert-Butyldimethylsilyloxy)cyclohexanone (starting material for 1h)

1H NMR (400 MHz, CDCl$_3$): $\delta = 0.03$ (s, 3H, Me-TBS), 0.10 (s, 3H, Me-TBS), 0.89 (s, 9H, t-Bu-TBS), 1.61–1.81 (m, 3H), 1.89–1.93 (m, 2H), 2.07–2.14 (m, 1H), 2.19–2.26 (m, 1H), 2.51–2.58 (m, 1H), 4.11 (ddd, $J = 1.0$, 5.5, 9.8 Hz, 1H, H-6).
13C NMR (100 MHz, CDCl$_3$): $\delta = -5.14$, −4.51, 18.54, 23.03, 25.93, 27.61, 37.26, 40.11, 76.98, 209.98.

1,3-Bis(trimethylsilyloxy)-2-methylbut-3-ene (1i)

1H NMR (400 MHz, CDCl$_3$): $\delta = 0.10$ (s, 9H, TMS), 0.20 (s, 9H, TMS), 1.01 (d, $J = 6.8$ Hz, 3H, Me-3), 2.20–2.32 (m, 1H, H-3), 3.35 (dd, $J = 9.8$ and 7.5 Hz, 1H, H-4), 3.67 (dd, $J = 9.8$ and 6.0 Hz, 1H, H-4), 4.03–4.06 (m, 2H, H-1).
13C NMR (100 MHz, CDCl$_3$): $\delta = -0.52$, −0.11, 14.90, 42.43, 64.34, 87.52, 152.40.

2,3-Bis(trimethylsilyloxy)but-1-ene (1j)

1H NMR (400 MHz, C$_6$D$_6$): $\delta = 0.13$ (s, 9H, TMS), 0.18 (s, 9H, TMS), 1.38 (d, $J = 6.5$ Hz, 3H, Me-3), 4.13 (q, $J = 6.5$ Hz, 1H, H-3), 4.21 (brs, 1H, H-1), 4.60 (t, $J = 0.9$ Hz, 1H, H-1).
13C NMR (100 MHz, C$_6$D$_6$): $\delta = 0.14$, 0.23, 22.79, 70.04, 88.39, 162.21.
1H NMR and 13C NMR spectra (C$_6$D$_6$) of compound 1e
1H NMR and 13C NMR spectra (C$_6$D$_6$) of compound 1f
1H NMR and 13C NMR spectra (C$_6$D$_6$) of compound 1h
1H NMR and 13C NMR spectra (CDCl$_3$) of compound 2a
^{1}H NMR and 13C NMR spectra (C$_6$D$_6$) of compound 2b
1H NMR and 13C NMR spectra (CDCl$_3$) of compound 2e
1H NMR and 13C NMR spectra (C$_6$D$_6$) of compound 2d
1H NMR and 13C NMR spectra (C_6D_6) of compound 2e
1H NMR and 13C NMR spectra (C_6D_6) of compound 2f
1H NMR and 13C NMR spectra (CDCl$_3$) of compound 2g
1H NMR and 13C NMR spectra (CDCl$_3$) of compound 2h
1H NMR and 13C NMR spectra (CDCl$_3$) of compound 2i
1H NMR and 13C NMR spectra (C_6D_6) of compound 2j