Supporting Information

4-CH₃OTEMPO/PEG-NO₂/HCl Catalytic System for Highly Efficient Aerobic Oxidation of Alcohols

Jianwei Tao, Qiongqiong Lu, Changhu Chu*, Renhua Liu*, and Xinmiao Liang*

School of Pharmacy, East China University of Science and Technology
130 Meilong road, Shanghai 200237 (P. R. China),
Fax: (+86) 21-6425-0627

*To whom correspondence should be addressed.
E-mail: chuch@ecust.edu.cn, liurh@ecust.edu.cn and liangxm@dicp.ac.cn

Supplementary Figure legends

Fig. 1: GC diagram of benzyl alcohol.
Fig. 2: GC diagram of oxidation of benzyl alcohol with 0.1mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 6h under the dioxygen balloon.
Fig. 3: GC diagram of oxidation of benzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 16h under the dioxygen balloon (Table 1, entry 1).
Fig. 4: GC diagram of 2-methylbenzyl alcohol.
Fig. 5: GC diagram of oxidation of 2-methylbenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 22h under the dioxygen balloon (Table 1, entry 4).
Fig. 6: GC diagram of 3-methylbenzyl alcohol.
Fig. 7: GC diagram of oxidation of 3-methylbenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 26h under the dioxygen balloon (Table 1, entry 5).
Fig. 8: GC diagram of 4-methylbenzyl alcohol.
Fig. 9: GC diagram of oxidation of 4-methylbenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 16h under the dioxygen balloon (Table 1, entry 6).
Fig. 10: GC diagram of 4-Fluorobenzyl alcohol.
Fig. 11: GC diagram of oxidation of 4-Fluorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 21h under the dioxygen balloon (Table 1, entry 7).
Fig. 12: GC diagram of 4-Iorobenzyl alcohol.
Fig. 13: GC diagram of oxidation of 4-Iorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 10h under the dioxygen balloon (Table 1, entry 8).
Fig. 14: GC diagram of 2-chlorobenzyl alcohol.
Fig. 15: GC diagram of oxidation of 2-chlorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 24h under the dioxygen balloon (Table 1, entry 9).
Fig. 16: GC diagram of 3-chlorobenzyl alcohol.
Fig. 17: GC diagram of oxidation of 3-chlorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 21h under the dioxygen balloon(Table 1, entry 10).
Fig. 18: GC diagram of 4-chlorobenzyl alcohol.
Fig. 19: GC diagram of oxidation of 4-chlorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 16h under the dioxygen balloon (Table 1, entry 11).
Fig. 20: GC diagram of 1-Octanol.
Fig. 21: GC diagram of oxidation of 1-Octanol with 1mmol% of 4-CH$_3$OTEMPO, 10mmol% of PEG-NO$_2$, 5mmol% of HCl at 60 °C for 12h under 0.4MPa dioxygen pressure (Table 1, entry 12).
Fig. 22: GC diagram of 2-Octanol.
Fig. 23: GC diagram of oxidation of 2-Octanol with 1mmol% of 4-CH$_3$OTEMPO, 10mmol% of PEG-NO$_2$, 5mmol% of HCl at 60 °C for 12h under 0.4MPa dioxygen pressure (Table 1, entry 13).
Fig. 24: GC diagram of iso-Octanol.
Fig. 25: GC diagram of oxidation of iso-Octanol with 1mmol% of 4-CH$_3$OTEMPO, 10mmol% of PEG-NO$_2$, 5mmol% of HCl at 60 °C for 10h under 0.4MPa dioxygen pressure (Table 1, entry 14).
Fig. 26: GC diagram of oxidation of benzyl alcohol, 0.01mmol% of 4-CH$_3$OTEMPO, 10mmol% of NO$_2$-benzyl alcohol, 5mmol% of HCl, 100mg of PEG at 40 °C for 12h under the dioxygen balloon (Table 1, entry 2).
Fig. 27: GC diagram of oxidation of benzyl alcohol, 0.01mmol% of 4-CH$_3$OTEMPO, 10mmol% of benzyl-NO$_2$ alcohol, 5mmol% of HCl at 40 °C for 12h under the dioxygen balloon (Table 1, entry 3).
Fig. 28: GC diagram of oxidation of benzyl alcohol, 0.001mmol% of 4-CH$_3$OTEMPO, 10mmol% of PEG-NO$_2$, 5mmol% of HCl at 40 °C for 84h under the dioxygen balloon.
Fig. 1 GC diagram of benzyl alcohol
Fig. 2 GC diagram of oxidation of benzyl alcohol with 0.1mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 6h under the dioxygen balloon
Fig. 3. GC diagram of oxidation of benzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40°C for 16h under the dioxygen balloon (Table 1, entry 1)
Fig. 4 GC diagram of 2-methylbenzyl alcohol
Fig. 5 GC diagram of oxidation of 2-methylbenzyl alcohol with 0.01 mmol% of 4-CH$_3$OTEMPO, 10 mmol% of PEG-NO$_2$, 5 mmol% of HCl at 40 °C for 22h under the dioxygen balloon (Table 1, entry 4)
Fig. 6 GC diagram of 3-methylbenzyl alcohol
Fig. 7 GC diagram of oxidation of 3-methylbenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 26h under the dioxygen balloon (Table 1, entry 5)
Fig. 8 GC diagram of 4-methylbenzyl alcohol
Fig. 9 GC diagram of oxidation of 4-methylbenzyl alcohol with 0.01mmol% of 4-CH$_3$OTEMPO, 10mmol% of PEG-NO$_2$, 5mmol% of HCl at 40 °C for 16h under the dioxygen balloon(Table 1, entry 6)
Fig. 10 GC diagram of 4-Fluorobenzyl alcohol
Fig. 11 GC diagram of oxidation of 4-Fluorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 21h under the dioxygen balloon (Table 1, entry 7).
Fig. 12 GC diagram of 4-indobenzyl alcohol
Fig. 13 GC diagram of oxidation of 4-Iorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40°C for 10h under the dioxygen balloon(Table 1, entry 8)
Fig. 14 GC diagram of 2-chlorobenzyl alcohol
Fig. 15 GC diagram of oxidation of 2-chlorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 24h under the dioxygen balloon(Table 1, entry 9)
Fig. 16 GC diagram of 3-chlorobenzyl alcohol

Data file: D:\CHEM32\11\DATA\TAOTAO\090606\G 2009-06-06 21-15-44
Sample Name: 3-chlorobenzyl alcohol

Injection Date: Sat, 6 Jun. 2009
Sample Name: 3-chlorobenzyl alcohol
Acq Operator:
Inj. No.: 3
Inj. Vol.: 0.2 µl

Acq. Method: D:\CHEM32\11\DATA\TAOTAO\090606\G 2009-06-06 21-15-44\G.M
Analysis Method: D:\CHEM32\11\DATA\TAOTAO\090606\G 2009-06-06 21-15-44\G.M
Last Changed: Sun, 23 Aug. 2009, 04:59:21 pm

Area Percent Report

<table>
<thead>
<tr>
<th>Signal</th>
<th>Multiplier</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak</th>
<th>RT (min)</th>
<th>Type</th>
<th>Width (min)</th>
<th>Area (pA)</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.669</td>
<td>BB</td>
<td>0.110</td>
<td>2.762e4</td>
<td>98.804</td>
</tr>
<tr>
<td>2</td>
<td>17.173</td>
<td>BB</td>
<td>0.041</td>
<td>334.300</td>
<td>1.196</td>
</tr>
</tbody>
</table>

Totals: 3.229e3 2.796e4

*** End of Report ***

Instrument 1: Sun, 23 Aug. 2009, 05:00:26 pm
Page 1 of 1

Fig. 16 GC diagram of 3-chlorobenzyl alcohol
Fig. 17 GC diagram of oxidation of 3-chlorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40 °C for 21h under the dioxygen balloon(Table 1, entry 10)
Fig. 18 GC diagram of 4-chlorobenzyl alcohol
Fig. 19 GC diagram of oxidation of 4-chlorobenzyl alcohol with 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40°C for 16h under the dioxygen balloon (Table 1, entry 11)
Fig. 20 GC diagram of 1-Octanol
Fig. 21 GC diagram of oxidation of 1-Octanol with 1mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 60°C for 12h under 0.4MPa dioxygen pressure (Table 1, entry 12)
Fig. 22 GC diagram of 2-Octanol
Fig. 23 GC diagram of oxidation of 2-Octanol with 1mmol% of 4-CH$_3$OTEMPO, 10mmol% of PEG-NO$_2$, 5mmol% of HCl at 60°C for 12h under 0.4MPa dioxygen pressure (Table 1, entry 13)
Fig. 24 GC diagram of *iso*-Octanol

<table>
<thead>
<tr>
<th>Peak</th>
<th>Height</th>
<th>Width</th>
<th>Area</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.372</td>
<td>0.059</td>
<td>1.055e4</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Sorted By: Signal
Calib. Data Modified: Thu, 1. Jan. 1970, 08:00:00 am
Multiplier: 1.000000
Dilution: 1.000000

In instrument 1 on Thu, 28. Jan. 2010, 02:49:52 pm, the area percent report was generated. The report indicates that the peak at 4.372 minutes had an area of 1.055e4 and contributed 100.000% to the total area.
Fig. 25. GC diagram of oxidation of iso-Octanol with 1mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 60°C for 10h under 0.4MPa dioxygen pressure (Table 1, entry 14)
Fig. 26 GC diagram of oxidation of benzyl alcohol, 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of NO₂-benzyl alcohol, 5mmol% of HCl, 100mg of PEG at 40°C for 12h under the dioxygen balloon (Table 1, entry 2)
Fig. 27 GC diagram of oxidation of benzyl alcohol, 0.01mmol% of 4-CH₃OTEMPO, 10mmol% of NO₂-benzyl alcohol, 5mmol% of HCl at 40 °C for 12h under the dioxygen balloon(Table 1, entry 3)
Fig. 28 GC diagram of oxidation of benzyl alcohol, 0.001mmol% of 4-CH₃OTEMPO, 10mmol% of PEG-NO₂, 5mmol% of HCl at 40°C for 84h under the dioxygen balloon