Kinetic Studies on Guanidine-Superbase-Promoted Ring-Opening Polymerization of ε-Caprolactone

Ruiting Yuana, Qinghui Shoub, Qaiser Mahmoodb, Guangqiang Xub, Xitong Sunb, Jiaqi Wana, Qinggang Wangb

a School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
b Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, P. R. of China

Ruiting Yuan, Qinghui Shou contributed equally to this work.

wangqg@qibebt.ac.cn

Supporting information

General consideration.. 2

Typical procedure for polymerization reactions.. 2

Table S1 ROP of ε-CL at different reaction times using TBD:1,4-butanediol:ε-CL ratio of 5:2:100 3

Table S2 ROP of ε-CL at different reaction times using TBD:1,4-butanediol:ε-CL ratio of 5:1:100 3

Figure S1. 1H NMR spectrum of PCL with 1\% TBD and 1, 4-butanediol as the initiator at 25 °C (Table 1, entry 1)........ 4

Figure S2 GPC traces for PCL produced at different concentration of TBD at room temperature (Table 1, entries 1 -3). 4

Figure S3. GPC traces for PCL produced at different \([\text{M}]_0/\text{[I]}_0\) at room temperature (Table 1, entries 3 – 7)........................... 5

Figure S4 Semilogarithmic plots of the monomer conversion stated as ln([CL] \textsubscript{t}/[CL] \textsubscript{0}) versus the reaction time for the polymerization of ε-caprolactone at different concentration of TBD: \([\text{CL}]_0/\text{[I]}_0 = 100; 1\%\ \text{TBD}; 2\%\ \text{TBD}; 5\%\ \text{TBD}.................. 5

Figure S5. GPC traces for PCL produced at different \([\text{M}]_0/\text{[I]}_0\) at room temperature (Table 1, entries 3 – 7)........................... 6

Figure S6 ln k vs. 1/T in Arrhenius plot to determine the apparent activation energy for ε-CL polymerization with n-butanol as the initiator in toluene... 6
General consideration

All reactions were carried out under air atmosphere in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. Characterization 1H NMR (400 MHz) spectra were acquired using a Varian Inova 400 MHz NMR spectrometer. Tetramethylsilane was used as an internal reference with deuterated chloroform as solvent. Molecular weights and polydispersities (M_w/M_n; M_w: weight average molecular weight, M_n: number-average molecular weight) of polymers were determined on a gel permeation chromatograph (GPC, HLC-8320, Tosoh Corporation, Japan) equipped with two HLC-8320 columns (TSK gel Super AWM-H, pore size: 9μm; 6 × 150 mm, Tosoh Corporation) and a double-path, double-flow refractive index(RI) detector (Bryce) at 30 °C. The molecular weights were calculated according to relative calibration with polystyrene standards.

Typical procedure for polymerization reactions

TBD catalyzed ε-caprolactone polymerizations were conducted in flamed dried Schlenk-type glassware on a dual-manifold Schlenk line. In a typical polymerization, ε-CL (1.07 ml, 1 mmol) was added to a solution of TBD (69.6 mg, 0.05 mmol) and 1,4-butandiol (9 μl, 0.001 mmol) in 5mL of toluene under an argon atmosphere at 25 °C. The solution was stirred for 110 mins and directly quenched by addition of benzoic acid(2 mol equiv to base). Conversion was determined by 1H NMR= 95%. The polymer was precipitated several times from cold methanol and dried under vacuum until constant weight. 1H NMR (CDCl3): δ, 4.05(t, 34H, C(=O)OCH$_2$ PCL backbone), 3.64(t, 1H,CH$_2$OH), 2.30(t, 34H, CH$_2$C(=O)O PCL backbone), 1.69-1.58 (m, 70H, CH$_2$CH$_2$CH$_2$ PCL backbone),1.43-1.33 (m, 35H, CH$_2$CH$_2$CH$_2$ PCL backbone). The yield was 86.4%. GPC analysis calibrated with polystyrene standards: M_n=13300 g·mol$^{-1}$, PDI=1.28.
Table S1 ROP of ε-CL at different reaction times using TBD:1,4-butandiol:ε-CL ratio of 5:2:100

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (min)</th>
<th>Conv (%)</th>
<th>M_n</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>18</td>
<td>8300</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>25</td>
<td>10000</td>
<td>1.06</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>34</td>
<td>12200</td>
<td>1.10</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>45</td>
<td>14800</td>
<td>1.13</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>55</td>
<td>17800</td>
<td>1.16</td>
</tr>
</tbody>
</table>

[a] Reactions were performed in 5 mL toluene.

[b] Measured by 1H NMR.

[c] Measured by GPC in THF.

Table S2 ROP of ε-CL at different reaction times using TBD:1,4-butandiol:ε-CL ratio of 5:1:100

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (min)</th>
<th>Conv (%)</th>
<th>M_n</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>360</td>
<td>54</td>
<td>9600</td>
<td>1.28</td>
</tr>
<tr>
<td>2</td>
<td>240</td>
<td>94</td>
<td>15300</td>
<td>1.24</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>85</td>
<td>17600</td>
<td>1.23</td>
</tr>
</tbody>
</table>

[a] Reactions were performed in 5 mL toluene

[b] Measured by 1H NMR

[c] Measured by GPC in THF
Figure S1. 1H NMR spectrum of PCL with 1% TBD and 1, 4-butanediol as the initiator at 25 °C (Table 1, entry 1).

Figure S2 GPC traces for PCL produced at different concentration of TBD at room temperature (Table 1, entries 1-3).
Figure S3. GPC traces for PCL produced at different \([M]_0/[I]_0\) at room temperature (Table 1, entries 3 – 7).

Figure S4. Semilogarithmic plots of the monomer conversion stated as \(\ln([CL]_t/[CL]_0)\) versus the reaction time for the polymerization of \(\varepsilon\)-caprolactone at different concentration of TBD: \([CL]_0/[I]_0 = 100\); 1% TBD; 2% TBD; 5% TBD.
Figure S5. GPC traces for PCL produced at different [M]₀/[I]₀ at room temperature (Table 1, entries 3 – 7).

Figure S6. ln k vs. 1/T in Arrhenius plot to determine the apparent activation energy for ɛ-CL polymerization with n-butanol as the initiator in toluene.