Supporting Information
for DOI: 10.1055/s-0039-1690707
© 2019. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany
Cu (II)-Catalyzed C-N Coupling of Aryl Halides and N-nucleophiles Promoted by Quebrachitol or Diethylene Glycol

Fangyu Du¹,a, Qifan Zhou¹,a, Yang Fu¹, Yuanguang Chen¹, Ying Wu¹b and Guoliang Chen¹

¹Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

¹ Authors contributed equally to this work

*Correspondence: chenguoliang@syphu.edu.cn (GL Chen); ynbnwy@163.com (YWu)

Table of Contents

Table S1. Identification of Reaction Conditions ¹ .. S1

Copies of the ¹H NMR and ¹³C NMR of 3a-3u and 4a-4o S2

Figure S1. 1-Phenylpiperidine (3a) .. S2
Figure S2. 1-(2-Nitrophenyl)piperidine (3b) ... S3
Figure S3. 1-(4-Nitrophenyl)piperidine (3c) ... S4
Figure S4. 1-(4-Methoxyphenyl)piperidine (3d) S5
Figure S5. 1-(4-Chlorophenyl)piperidine (3e) S6
Figure S6. 1-(Thiophen-2-yl)piperidine (3f) .. S7
Figure S7. 1-(4-Nitrophenyl)pyrrolidine (3g) S8
Figure S8. 4-Phenylmorpholine (3h) .. S9
Figure S9. 4-(p-Tolyl)morpholine (3i) ... S10
Figure S10. 2-(4-(4-Methoxyphenyl)piperazin-1-yl)ethan-1-ol (3j) S11
Figure S11. N,N-Diethylaniline (3k) .. S12
Figure S12. (S)-4-Methyl-N-(1-phenylethyl)aniline (3l) S13
Figure S13. 2-((4-Nitrophenyl)amino)ethan-1-ol (3m) S14
Figure S14. 1-(4-(4-Nitrophenyl)piperazin-1-yl)ethan-1-one (3n) S15
Figure S15. 4-Chloro-2-(cyclohexylamino)benzoic acid (3o) S16
Figure S16. 3-Nitro-4-(piperidin-1-yl)benzoic acid (3p) S17
Figure S17. 4-(Cyclohexylamino)-3-nitrobenzoic acid (3q) S18
Figure S18. 3-(Phenylamino)propanoic acid (3r) S19
Figure S19. Phenyl-\textit{D}-valine (3s) ... S20
Figure S20. \textit{tert}-Butyl phenyl-\textit{D}-valinate (3t) S21
Figure S21. (4-Nitrophenyl)glycine (3u) .. S22
Figure S22. 4-Methoxy-N-(4-nitrophenyl)aniline (4a) S23
Figure S23. 4-Nitro-N-phenylaniline (4b) .. S24
Figure S24. \textit{N}-(4-Methoxyphenyl)-3-nitroaniline (4c) S25
Figure S25. 5,5,8,8-Tetramethyl-\textit{N}-(2-nitrophenyl)-5,6,7,8-tetrahydronaphthalen-2-amine (4d) S26
Figure S26. 2-Methyl-N-phenylaniline (4e) ... S27
Figure S27. 4-Methyl-N-phenylaniline (4f) ... S28
Figure S28. 4-Fluoro-N-phenylaniline (4g) ... S29
Figure S29. 4-Chloro-N-phenylaniline (4h) ... S30
Figure S30. 4-Methoxy-N-phenylaniline (4i) ... S31
Figure S31. \textit{N}-(4-Methoxyphenyl)-2-methyl-3-(trifluoromethyl)aniline (4j) ... S33
Figure S32. \textit{N}-Phenyl-(1,1'-biphenyl)-4-amine (4k) S34
Figure S33. 1-(4-(Phenylamino)phenyl)ethan-1-one (4l) S35
Figure S34. 2-(Phenylamino)benzoic acid (4m) S36
Figure S35. 3-(Phenylamino)benzoic acid (4n) S37
Figure S36. 2-(2-((2,6-Dichlorophenyl)amino)phenyl)acetic acid (4o) S38

Copies of the GC-MS or HRMS and \textit{1}H NMR of 5a-5z S39
Figure S37. Aniline (5a) ... S40
Figure S38. \textit{o}-Toluidine (5b) ... S42
Figure S39. 4-Isopropylaniline (5c) ... S44
Figure S40. 4-Methoxyaniline (5d) .. S45
Table S1. Identification of Reaction Conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>QCT</th>
<th>Base</th>
<th>Solvent</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>K<sub>2</sub>CO<sub>3</sub></td>
<td>DMSO</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>t-BuOK</td>
<td>DMSO</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>t-BuOK</td>
<td>DMF</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>t-BuOK</td>
<td>ethylene glycol</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>t-BuOK</td>
<td>1,3-propanediol</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>t-BuOK</td>
<td>1,4-butanediol</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>t-BuOK</td>
<td>1,6-hexanediol</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>t-BuOK</td>
<td>2-methoxyethanol</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>t-BuOK</td>
<td>1,2-dimethoxyethane</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>t-BuOK</td>
<td>diethylene glycol</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>t-BuOK</td>
<td>diethylene glycol</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>K<sub>2</sub>CO<sub>3</sub></td>
<td>diethylene glycol</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>K<sub>3</sub>PO<sub>4</sub></td>
<td>diethylene glycol</td>
<td>trace</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>NaHCO<sub>3</sub></td>
<td>diethylene glycol</td>
<td>trace</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>diethylene glycol</td>
<td>trace</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>CsF</td>
<td>diethylene glycol</td>
<td>trace</td>
</tr>
<tr>
<td>17<sup>c</sup></td>
<td>-</td>
<td>K<sub>2</sub>CO<sub>3</sub></td>
<td>diethylene glycol</td>
<td>80</td>
</tr>
</tbody>
</table>

^a Standard conditions: bromobenzene (1.28 mmol), aniline (1.53 mmol), QCT (0.26 mmol), base (3.85 mmol), solvent (3 mL), under argon atmosphere at 110 °C for 12 h. “+” adding QCT; “-” no adding QCT. ^b Isolated yield. ^c The loading of 1a was 5 gram.
Copies of the 1H NMR and 13C NMR of 3a-3u and 4a-4o

Figure S1. 1-Phenylpiperidine (3a)
Figure S2. 1-(2-Nitrophenyl)piperidine (3b)
Figure S3. 1-(4-Nitrophenyl)piperidine (3c)
Figure S4. 1-(4-Methoxyphenyl)piperidine (3d)
Figure S5. 1-(4-Chlorophenyl)piperidine (3e)
Figure S6. 1-(Thiophen-2-yl)piperidine (3f)
Figure S7. 1-(4-Nitrophenyl)pyrrolidine (3g)
Figure S8. 4-Phenylmorpholine (3h)
Figure S9. 4-(p-Tolyl)morpholine (3i)
Figure S10. 2-(4-(4-Methoxyphenyl)piperazin-1-yl)ethan-1-ol (3j)
Figure S11. N,N-Diethylaniline (3k)
Figure S12. (S)-4-Methyl-N-(1-phenylethyl)aniline (3I)
Figure S13. 2-((4-Nitrophenyl)amino)ethan-1-ol (3m)
Figure S14. 1-(4-(4-Nitrophenyl)piperazin-1-yl)ethan-1-one (3n)
Figure S15. 4-Chloro-2-(cyclohexylamino)benzoic acid (3o)
Figure S16. 3-Nitro-4-(piperidin-1-yl)benzoic acid (3p)
Figure S17. 4-(Cyclohexylamino)-3-nitrobenzoic acid (3q)
Figure S18. 3-(Phenylamino)propanoic acid (3r)
Figure S19. Phenyl-D-valine (3s)
Figure S20. tert-Butyl phenyl-D-valinate (3t)
Figure S21. (4-Nitrophenyl)glycine (3u)
Figure S22. 4-Methoxy-N-(4-nitrophenyl)aniline (4a)
Figure S23. 4-Nitro-N-phenylaniline (4b)
Figure S24. N-(4-Methoxyphenyl)-3-nitroaniline (4c)
Figure S25. 5,5,8,8-Tetramethyl-N-(2-nitrophenyl)-5,6,7,8-tetrahydronaphthalen-2-amine (4d)
Figure S26. 2-Methyl-N-phenylaniline (4e)
Figure S27. 4-Methyl-N-phenylaniline (4f)
Figure S28. 4-Fluoro-N-phenylaniline (4g)
Figure S29. 4-Chloro-N-phenylaniline (4h)
Figure S30. 4-Methoxy-N-phenylaniline (4i)
-ESI Scan (0.167-0.532 min, 23 Scans) Frag=75.0V 4J-NEG.d Subtract (3)

Chemical Formula: C_{13}H_{14}F_3NO
Exact Mass: 281.1027

Counts vs. Mass-to-Charge (m/z)
Figure S31. \(N\)-(4-Methoxyphenyl)-2-methyl-3-(trifluoromethyl)aniline (4j)
Figure S32. *N*-Phenyl-(1,1'-biphenyl)-4-amine (4k)
Figure S33. 1-(4-(Phenylamino)phenyl)ethan-1-one (4l)
Figure S34. 2-(Phenylamino)benzoic acid (4m)
Figure S35. 3-(Phenylamino)benzoic acid (4n)
Figure S36. 2-(2-((2,6-Dichlorophenyl)amino)phenyl)acetic acid (4o)
Copies of the GC-MS or HRMS and 1H NMR of 5a-5z
Figure S37. Aniline (5a)
Figure S38. o-Toluidine (5b)
<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.981</td>
<td>512</td>
<td>522</td>
<td>546</td>
<td>585</td>
<td>2</td>
<td>5728055</td>
<td>146773861</td>
<td>100.00%</td>
<td>98.65%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.003</td>
<td>647</td>
<td>652</td>
<td>664</td>
<td>586</td>
<td>2235629</td>
<td>2000651</td>
<td>1.36%</td>
<td>1.34%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular Weight: 135.2100
Figure S39. 4-Isopropylaniline (5c)
Figure S40. 4-Methoxyaniline (5d)
Figure S41. 2-Aminophenol (5e)
Figure S42. 4-Aminophenol (5f)
Figure S43. 4-Aminobenzenethiol (5g)
Figure S44. 4-Nitroaniline (5h)
Figure S45. 4-Aminobenzonitrile (5i)
Figure S46. 3-(Trifluoromethyl)aniline (5j)
Figure S47. 4-Fluoroaniline (5k)
Figure S48. 3,5-Bis(trifluoromethyl)aniline (5l)
Molecular Weight: 141.5980
Figure S49. 2-Chloro-6-methylaniline (5m)
Figure S50. 2-(Trifluoromethoxy)aniline (5n)
Figure S51. 2-Aminobenzoic acid (5o)
Figure S52. 2-Amino-4-methylbenzoic acid (5p)
Molecular Weight: 135.1660
Figure S53. 1-(4-Aminophenyl)ethan-1-one (5q)
<table>
<thead>
<tr>
<th>#</th>
<th>保留时间（秒）</th>
<th>扫描</th>
<th>扫描</th>
<th>扫描</th>
<th>峰高 (RGU)</th>
<th>修正面积 (RGU)</th>
<th>总面积 (RGU)</th>
<th>%</th>
<th>% 占最大值</th>
<th>比总数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.291</td>
<td>840</td>
<td>846</td>
<td>853</td>
<td>886</td>
<td>5599173</td>
<td>2.45%</td>
<td>2.32%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.405</td>
<td>1083</td>
<td>1070</td>
<td>1090</td>
<td>960</td>
<td>22942270</td>
<td>100.00%</td>
<td>94.59%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.729</td>
<td>1129</td>
<td>1135</td>
<td>1146</td>
<td>921</td>
<td>701351</td>
<td>3.26%</td>
<td>3.087%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Exact Mass: 203.1674](image)
Figure S54. 5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-amine (5r)
Figure S55. Naphthalen-1-amine (S5s)
Figure S56. Quinolin-5-amine (5t)
Figure S57. 4-Methylpyridin-2-amine (5u)
Figure S58. 2-Aminonicotinic acid (5v)
Molecular Weight: 94.1170
Figure S59. Pyridin-4-amine (5w)
Figure S60. Pyridin-2-amine (5x)
Figure S61. 4-Methylpyridin-3-amine (5y)
Figure S62. 1,2,3,4-Tetrahydroacridin-9-amine (5z)
Radical clock related spectrum
Exact Mass: 140.0841
Procedures, Characterization Data, and References

General Information
All starting materials, reagents, and solvents are commercially available and used without further purification. Melting points were determined with a X-4 apparatus and are uncorrected. The nuclear magnetic resonance (NMR) spectra were recorded with a Bruker 400 MHz spectrometer in CDCl₃ or DMSO-d₆ by using tetramethylsilane (TMS) as an internal standard. Electrospray ionization mass spectrometry (ESI-MS) analyses were recorded with an Agilent 1100 Series MSD Trap SL (Santa Clara, CA, USA). The reactions were monitored by thin-layer chromatography (TLC: HG/T2354-92, GF254), and compounds were visualized on TLC with UV light.

Synthesis of 3a–v; General Procedure A
To a solution of aliphatic amine (1.53 mmol), Cu(OAc)₂·H₂O (0.13 mmol), QCT (0.26 mmol), K₂CO₃ (3.85 mmol) in DMSO (3 mL) were added aryl halides (1.28 mmol). The flask was evacuated and backfilled with argon (3×), and the resulting mixture was heated in a oil bath with appropriate temperature under rapid stirring for the indicated time. After the complete consumption of aryl halide as monitored by TLC, the flask was cooled to r.t. The flask was opened to air, and the reaction mixture (if the product was acidic, the mixture was acidified) was extracted with ethyl acetate (3×10 mL), and the organic layer was washed with water (2×10 mL) and once with brine (10 mL), dried with magnesium sulfate and concentrated in vacuo. The product was purified by column chromatography on silica gel.

Synthesis of 4a–p; General Procedure B
To a solution of aromatic amine (1.53 mmol), Cu(OAc)₂·H₂O (0.13 mmol), K₂CO₃ (3.84 mmol) in DEG (3 mL) were added aryl halides (1.28 mmol). The flask was evacuated and backfilled with argon (3×), and the resulting mixture was heated in a oil bath with appropriate temperature under rapid stirring for the indicated time. After the complete consumption of aryl halide as monitored by TLC, the flask was cooled to r.t. The flask was opened to air, and the reaction mixture (if the product was acidic, the mixture was acidified) was extracted with ethyl acetate (3×10 mL), and the organic layer was washed with water (2×10 mL) and once with brine (10 mL), dried with magnesium sulfate and concentrated in vacuo. The product was purified by column chromatography on silica gel.

Synthesis of 5a–z, 5aa; General Procedure C
To a sealed reaction vessel were added ammonia (aq, 25%) (1.8 mL, 12.8 mmol), Cu(OAc)₂·H₂O (0.13 mmol), QCT (0.26 mmol) in NMP (1.8 mL) and aryl halides (1.28 mmol). The resulting mixture was heated in an oil bath with appropriate temperature under rapid stirring for the indicated time. After complete consumption of the aryl halide as monitored by TLC, the reaction vessel was cooled to r.t. It was opened to air, and the reaction mixture was extracted with ethyl acetate (3×10 mL), and the organic layer was washed with water (2×10 mL) and once with brine (10 mL), dried with magnesium sulfate and concentrated in vacuo. The product was purified by column chromatography on silica gel.
According to the general procedure A, 3a was obtained as a light-yellow oil (0.19 g, 93%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.26–7.21\) (m, 2 H), 6.94–6.91 (m, 2 H), 6.83–6.79 (m, 1 H), 3.14 (t, \(J = 5.4\) Hz, 4 H), 1.73–1.67 (m, 4 H), 1.59–1.53 (m, 2 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 152.3, 129.0, 119.2, 116.6, 50.7, 25.9, 24.4\).

According to the general procedure A, 3b was obtained as a solid (0.25 g, 96%). M.p. 69–70 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.75–7.73\) (dd, \(J = 8.2, 1.6\) Hz, 1 H), 7.46–7.41 (m, 1 H), 7.15–7.12 (dd, \(J = 8.3, 1.0\) Hz, 1 H), 6.98–6.94 (m, 1 H), 3.03 (t, \(J = 5.3\) Hz, 4 H), 1.75–1.69 (m, 4 H), 1.62–1.56 (m, 2 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 147.0, 142.7, 133.4, 126.0, 120.9, 120.6, 53.0, 26.0, 24.0\).

According to the general procedure A, 3c was obtained as a yellow solid (0.25 g, 94%). M.p. 95 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.14–8.11\) (m, 2 H), 6.92 (d, \(J = 9.4\) Hz, 2 H), 3.44 (t, \(J = 4.8\) Hz, 4 H), 1.78–1.67 (m, 6 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 154.8, 137.6, 126.1, 112.5, 48.5, 25.2, 24.2\).

According to the general procedure A, 3d was obtained as a red oil (0.22 g, 90%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 6.93\) (br, 2 H), 6.85–6.82 (m, 2 H), 3.76 (s, 3 H), 3.03 (t, \(J = 5.0\) Hz, 4 H), 1.73 (br, 4 H), 1.57–1.53 (m, 2 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 153.8, 147.1, 118.9, 114.4, 55.6, 52.5, 26.1, 24.1\).

According to the general procedure A, 3e was obtained as a white solid (0.23 g, 92%). M.p. 60–63 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.19\) (d, \(J = 8.7\) Hz, 2 H), 6.86 (br, 2 H), 3.12 (t, \(J = 5.2\) Hz, 4 H), 1.76–1.70 (m, 4 H), 1.58–1.57 (m, 2 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 150.8, 128.8, 123.9, 117.7, 50.7, 25.7, 24.2\).

According to the general procedure A, 3f was obtained as a brown oil (0.18 g, 85%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 6.93\) (br, 2 H), 6.85–6.82 (m, 2 H), 3.76 (s, 3 H), 3.03 (t, \(J = 5.0\) Hz, 4 H), 1.57–1.53 (m, 2 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 153.8, 147.1, 118.9, 114.4, 55.6, 52.5, 26.1, 24.1\).

According to the general procedure A; solid (0.22 g, 90%). M.p. 164–165 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.13–8.11\) (m, 2 H), 6.49–6.46 (m, 2 H), 3.42–3.39 (m, 4 H), 2.09–2.06 (m, 4 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 151.9, 136.6, 126.3, 110.4, 47.9, 25.4\).

According to the general procedure A, 3h was obtained as an off-white solid (0.20 g, 95%). M.p. 45–47 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.31–7.26\) (m, 2 H), 6.94–6.88 (m, 3 H), 3.87 (t, \(J = 4.5\) Hz, 4 H), 3.17 (t, \(J = 4.8\) Hz, 4 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 151.3, 129.2, 120.1, 115.7, 67.0, 49.4\).

According to the general procedure A (0.21 g, 91%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.10\) (d, \(J = 8.4\) Hz, 2 H), 6.85 (d, \(J = 6.8\) Hz, 2 H), 3.86 (br, 4 H), 3.11 (t, \(J = 4.4\) Hz, 4 H), 2.28 (s, 3 H). \(^1\)C NMR (101 MHz, CDCl\(_3\)): \(\delta = 149.2, 129.8, 121.1, 116.6, 67.0, 50.0, 21.8\).

According to the general procedure A, 3j was obtained as an off-white solid (0.24 g, 80%). M.p. 65–75 °C. \(^1\)H
NMR (400 MHz, CDCl₃): δ = 6.92–6.88 (m, 2 H), 6.86–6.83 (m, 2 H), 3.77 (s, 3 H), 3.67 (t, J = 5.3 Hz, 2 H), 3.13–3.11 (m, 4 H), 2.72–2.70 (m, 4 H), 2.65–2.62 (t, J = 5.4 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃): δ = 153.9, 145.6, 118.3, 114.5, 59.3, 57.7, 55.6, 53.0, 50.7.

N,N-Diethylaniline (3k):[11] According to the general procedure A, 3k was obtained as a light yellow liquid (0.18 g, 82%). ¹H NMR (400 MHz, CDCl₃): δ = 7.23–7.18 (m, 2 H), 6.69–6.61 (m, 3 H), 3.37–3.32 (q, J = 14.1, 7.0 Hz, 4 H), 1.15 (t, J = 7.1 Hz, 6 H). ¹³C NMR (101 MHz, CDCl₃): δ = 147.9, 129.3, 115.4, 111.9, 44.4, 12.6.

(S)-4-Methyl-N-(1-phenylethyl)aniline (3l):[12] According to the general procedure A, 3l was obtained as an off-white solid (0.22 g, 82%). M.p. 101–104 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.35 (m, 2 H), 7.32–7.28 (m, 2 H), 7.23–7.19 (m, 1 H), 6.91 (d, J = 8.2 Hz, 2 H), 6.47 (d, J = 8.2 Hz, 2 H), 4.48–4.43 (q, J = 13.5, 6.8 Hz, 1 H), 2.18 (s, 3 H), 1.53 (d, J = 6.7 Hz, 3 H). ¹³C NMR (101 MHz, DMSO-d₆): δ = 145.5, 141.1, 129.7, 128.7, 126.9, 126.4, 125.9, 113.5, 53.8, 25.1, 20.4.

2-[(4-Nitrophenyl)amino]ethan-1-ol (3m):[13] According to the general procedure A, 3m was obtained as a yellow solid (0.19 g, 83%). M.p. 93–96 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 8.05 (d, J = 9.2 Hz, 2 H), 7.35 (t, J = 5.0 Hz, 1 H), 6.73 (d, J = 9.3 Hz, 2 H), 4.86 (t, J = 5.4 Hz, 1 H), 3.65–3.61 (q, J = 11.2, 5.6 Hz, 2 H), 3.31–2.27 (q, J = 11.4, 5.7 Hz, 2 H). ¹³C NMR (101 MHz, DMSO-d₆): δ = 155.3, 136.0, 126.7, 111.3, 59.8, 45.5.

1-[4-(4-Nitrophenyl)piperazin-1-yl]ethan-1-one (3n):[14] According to the general procedure A, 3n was obtained as a yellow solid (0.29 g, 90%). ¹H NMR (400 MHz, CDCl₃): δ = 8.16–8.12 (m, 2 H), 6.85–6.81 (m, 2 H), 3.81 (t, J = 4.9 Hz, 2 H), 3.68–3.66 (m, 2 H), 3.48–3.44 (m, 4 H), 2.16 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ = 169.2, 154.4, 139.1, 126.0, 125.9, 113.5, 47.0, 46.9, 45.5, 40.7, 21.3.

4-Chloro-2-(cyclohexylamino)benzoic acid (3o): According to the general procedure A, 3o was obtained as a white solid (0.28 g, 87%). M.p. 173–176 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 8.04 (br, 1 H), 7.77 (d, J = 8.5 Hz, 1 H), 6.77 (d, J = 1.6 Hz, 1 H), 6.54–6.51 (dd, J = 8.5, 1.8 Hz, 1 H), 3.46 (br, 1 H), 1.91–1.88 (m, 2 H), 1.68–1.64 (m, 2 H), 1.58–1.55 (m, 1 H), 1.46–1.35 (m, 2 H), 1.30–1.18 (m, 3 H). ¹³C NMR (101 MHz, DMSO-d₆): δ = 170.0, 151.2, 139.8, 134.1, 114.2, 111.2, 109.1, 49.8, 32.6, 31.1, 25.7, 24.4.

3-Nitro-4-(piperidin-1-yl)benzoic acid (3p):[15] According to the general procedure A, 3p was obtained as a white solid (0.29 g, 90%). ¹H NMR (400 MHz, CDCl₃): δ = 8.50 (d, J = 2.1 Hz, 1 H), 8.07–8.05 (dd, J = 8.8, 2.1 Hz, 1 H), 6.77 (d, J = 1.6 Hz, 1 H), 6.54–6.51 (dd, J = 8.5, 1.8 Hz, 1 H), 3.46 (br, 1 H), 1.91–1.88 (m, 2 H), 1.68–1.64 (m, 2 H), 1.58–1.55 (m, 1 H), 1.46–1.35 (m, 2 H), 1.30–1.18 (m, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ = 170.3, 147.9, 139.3, 134.6, 129.7, 119.2, 118.7, 51.9, 25.6, 23.8.

4-(Cyclohexylamino)-3-nitrobenzoic acid (3q):[16] According to the general procedure A, 3q was obtained as a white solid (0.28 g, 82%). M.p. >300 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 8.62 (s, 1 H), 8.25 (d, J = 7.6 Hz, 1 H), 7.97 (d, J = 7.3 Hz, 1 H), 7.18 (d, J = 7.8 Hz, 1 H), 3.7 (br, 1 H), 1.97–1.95 (m, 2 H), 1.70 (m, 2 H), 1.62–1.59 (m, 1 H), 1.48–1.35 (m, 4 H), 1.26–1.24 (m, 1 H). ¹³C NMR (101 MHz, CDCl₃): δ = 166.8, 146.7, 136.7, 130.7, 129.0, 118.2, 115.3, 51.0, 32.3, 25.4, 24.5.

3-(Phenylamino)propanoic acid (3r):[17] According to the general procedure A, 3r
was obtained as a colorless oil (0.19 g, 88%). ¹H NMR (400 MHz, DMSO-d₆): δ = 12.17 (br, 1 H), 7.09–7.04 (m, 2 H), 6.57–6.51 (m, 3 H), 5.58 (br, 1 H), 3.24 (t, J = 6.9 Hz, 2 H), 2.48 (t, J = 6.9 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.7, 147.9, 128.3, 115.2, 111.4, 38.2, 33.1.

Phenyl-D-valine (3s): According to the general procedure A, 3s was obtained as a white solid (0.21 g, 85%). M.p. 112–114 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 12.17 (br, 1 H), 7.09–7.04 (m, 2 H), 6.57–6.51 (m, 3 H), 5.58 (br, 1 H), 3.24 (t, J = 6.9 Hz, 2 H), 2.48 (t, J = 6.9 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.7, 147.9, 128.3, 115.2, 111.4, 38.2, 33.1.

tert-Butylphenyl-D-valinate (3t): According to the general procedure A, 3t was obtained as a white solid (0.27 g, 86%). M.p. 64–66 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.17–7.13 (m, 2 H), 6.72–6.69 (m, 1 H), 6.64–6.62 (m, 2 H), 4.12 (br, 1 H), 3.75 (d, J = 5.3 Hz, 1 H), 2.15–2.04 (m, 1 H), 1.42 (s, 9 H), 1.05–1.01 (q, J = 8.9, 6.9 Hz, 6 H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.8, 147.6, 129.2, 117.9, 113.6, 81.5, 62.9, 31.5, 28.1, 19.0, 18.7.

(4-Nitrophenyl)glycine (3u): According to the general procedure A, 3u was obtained as a brown solid (0.22 g, 88%). M.p. 224–226 °C. ¹H NMR (400 MHz, DMSO-d₆): δ = 12.83 (br, 1 H), 8.02 (d, J = 9.2 Hz, 2 H), 7.44 (t, J = 5.6 Hz, 1 H), 6.68 (d, J = 9.1 Hz, 2 H), 3.99 (d, J = 6.0 Hz, 2 H). ¹³C NMR (101 MHz, DMSO-d₆): δ = 171.8, 154.7, 136.8, 126.5, 111.7, 44.5.

1-[2-(Allyloxy)phenyl)piperidine (3v): According to the general procedure A, 3v was obtained as a colorless oil (0.21 g, 75%). ¹H NMR (400 MHz, CDCl₃): δ = 12.17 (br, 1 H), 7.09–7.04 (m, 2 H), 6.57–6.51 (m, 3 H), 5.58 (br, 1 H), 3.24 (t, J = 6.9 Hz, 2 H), 2.48 (t, J = 6.9 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃): δ = 172.7, 147.9, 128.3, 115.2, 111.4, 38.2, 33.1.

4-Methoxy-N-(4-nitrophenyl)aniline (4a): According to the general procedure B, 4a was obtained as (0.15 g, 70%). M.p. 148–149 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (d, J = 9.2 Hz, 2 H), 7.17 (d, J = 8.9 Hz, 2 H), 6.95 (d, J = 8.9 Hz, 2 H), 6.77 (d, J = 9.2 Hz, 2H), 6.11 (br, 1H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ = 151.4, 143.2, 137.2, 122.3, 121.4, 118.6, 116.6, 113.3, 68.9, 52.3, 26.5, 24.6.

4-Nitro-N-phenylaniline (4b): According to the general procedure B (0.16 g, 57%). M.p. 124–126 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.14–8.10 (m, 2 H), 7.41–7.36 (m, 2 H), 7.22–7.15 (m, 3 H), 6.96–6.92 (m, 2 H), 6.27 (br, 1 H). ¹³C NMR (101 MHz, CDCl₃): δ = 150.3, 139.8, 139.5, 129.8, 126.3, 125.5, 115.0, 112.7, 55.6.

N-(4-Methoxyphenyl)-3-nitroaniline (4c): According to the general procedure B (0.31 g, 75%). M.p. 115–116 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.64 (t, J = 8.6 Hz, 1 H), 7.61–7.59 (m, 1 H), 7.30 (t, J = 8.1 Hz, 1 H), 7.13–7.08 (m, 3 H), 6.93–6.91 (m, 2 H), 5.77 (br, 1 H), 3.83 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ = 155.7, 149.3, 147.6, 134.5, 130.8, 123.0, 120.5, 115.3, 112.3, 107.5, 55.7.

5,5,8,8-Tetramethyl-N-(2-nitrophenyl)-5,6,7,8-tetrahydronaphthalen-2-amine (4d): According to the general procedure B (0.29 g, 71%). ¹H NMR (400 MHz, CDCl₃): δ = 9.48 (br, 1 H), 8.21–8.19 (dd, J = 8.6, 1.5 Hz, 1 H), 7.36–7.32 (m, 2 H), 7.22–7.15 (m, 3 H), 6.96–6.92 (m, 2 H), 6.27 (br, 1 H). ¹³C NMR (101 MHz, CDCl₃): δ = 151.4, 143.2, 137.2, 122.3, 121.4, 118.6, 116.6, 113.3, 68.9, 52.3, 26.5, 24.6.
7.21–7.19 (dd, J = 8.7, 1.1 Hz, 1 H), 7.18 (d, J = 2.3 Hz, 1 H), 7.06–7.03 (dd, J = 8.4, 2.4 Hz, 1 H), 6.75–6.71 (m, 1 H), 1.71 (s, 4 H), 1.30 (s, 6 H), 1.28 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 146.7, 143.7, 142.7, 135.8, 135.6, 132.8, 127.8, 126.7, 122.6, 122.0, 117.0, 116.1, 35.0, 34.9, 34.5, 34.1, 31.9, 31.8.

2-Methyl-N-phenylaniline (4e):[24] According to the general procedure B (0.15 g, 62%). 1H NMR (400 MHz, CDCl3): δ = 7.26–7.18 (m, 4 H), 7.15–7.11 (m, 1 H), 6.96–6.87 (m, 4 H), 5.37 (br, 1 H), 2.25 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 144.0, 141.3, 131.0, 129.3, 128.4, 126.8, 122.0, 120.5, 118.9, 116.9, 20.7.

4-Methyl-N-phenylaniline (4f):[25] According to the general procedure B, 4f was obtained as an off-white solid (0.17 g, 74%). M.p. 85–86 °C. 1H NMR (400 MHz, CDCl3): δ = 7.23–7.22 (m, 2 H), 7.10–7.07 (m, 2 H), 7.02–7.00 (m, 4 H), 6.88 (t, J = 7.6 Hz, 1 H), 5.64 (br, 1 H), 2.30 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 144.0, 140.3, 130.9, 129.9, 129.3, 120.3, 118.9, 116.9, 20.7.

4-Fluoro-N-phenylaniline (4g):[26] According to the general procedure B, 4g was obtained as a brown oil (0.17 g, 72%). 1H NMR (400 MHz, CDCl3): δ = 7.27–7.21 (m, 2 H), 7.07–7.02 (m, 2 H), 7.00–6.91 (m, 4 H), 6.88 (t, J = 6.4 Hz, 1 H), 5.28 (br, 1 H). 13C NMR (101 MHz, CDCl3): δ = 158.1 (d, J = 241.4 Hz), 143.9, 138.9 (d, J = 3.0 Hz), 129.4, 120.5 (d, J = 7.0 Hz), 116.8, 116.0 (d, J = 22.2 Hz).

4-Chloro-N-phenylaniline (4h):[27] According to the general procedure B, 4h was obtained as a brown solid (36 mg, 11%). M.p. 57–60 °C. 1H NMR (400 MHz, CDCl3): δ = 7.29–7.25 (m, 2 H), 7.21–7.19 (m, 2 H), 7.06–7.04 (m, 2 H), 7.00–6.94 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 142.8, 142.0, 129.5, 129.4, 125.6, 121.6, 121.6, 118.9, 118.2.

4-Methoxy-N-phenylaniline (4i):[28] According to the general procedure B (0.21 g, 85%). M.p. 99–101 °C. 1H NMR (400 MHz, CDCl3): δ = 7.22 (t, J = 7.4 Hz, 2 H), 7.10 (br, 2 H), 6.99–6.85 (m, 5 H), 3.80 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 155.3, 145.2, 135.8, 129.3, 122.2, 119.6, 115.7, 114.7, 55.6.

N-(4-Methoxyphenyl)-2-methyl-3-(trifluoromethyl)aniline (4j): According to the general procedure B (0.21 g, 58%). 1H NMR (400 MHz, CDCl3): δ = 7.18–7.09 (m, 3 H), 7.00 (br, 2 H), 6.89–6.87 (m, 2 H), 3.81 (s, 3 H), 2.33 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 155.8, 145.1, 135.5, 130.9, 129.9 (J = 29.1 Hz), 123.2, 118.4, 117.2 (J = 6.0 Hz), 114.9, 55.6, 13.2 (J = 2.3 Hz). HRMS (ESI): m/z [M – H]– calcd for C15H13F3NO: 280.0955; found: 280.0962.

N-Phenyl-(1,1'-biphenyl)-4-amine (4k):[29] According to the general procedure B, 4k was obtained as a yellow solid (0.24 g, 76%). M.p. 113 °C. 1H NMR (400 MHz, CDCl3): δ = 7.57–7.50 (m, 4 H), 7.41 (t, J = 7.5 Hz, 2 H), 7.29 (t, J = 7.6 Hz, 3 H), 7.13 (br, 3 H), 6.96 (br, 1 H). 13C NMR (101 MHz, CDCl3): δ = 142.9, 142.6, 140.9, 133.8, 129.4, 128.8, 128.0, 126.6, 126.5, 121.3, 118.1, 117.8.

1-(4-(Phenylamino)phenyl)ethan-1-one (4l):[30] According to the general procedure B, 4l was obtained as a yellow solid (0.24 g, 76%). M.p. 105–106 °C, 1H NMR (400 MHz, CDCl3): δ = 7.89–7.85 (m, 2 H), 7.37–7.32 (m, 2 H), 7.20–7.17 (m, 2 H), 7.11–7.06 (m, 1 H), 7.01–6.98 (m, 2 H), 2.53 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 196.5, 148.5, 141.1, 140.7, 130.7, 129.5, 129.0, 123.3, 120.7, 114.4, 26.2.

2-(Phenylamino)benzoic acid (4m):[31] According to the general procedure B, 4m was obtained as a white solid (0.19 g, 70%). M.p. 182–184 °C. 1H NMR (400 MHz,
DMSO-d$_6$): $\delta = 9.67$ (br, 1 H), 7.92–7.89 (dd, $J = 8.0, 1.6$ Hz, 1 H), 7.41–7.34 (m, 3 H), 7.25–7.22 (m, 3 H), 7.07 (t, $J = 7.2$ Hz, 1 H), 6.78 (t, $J = 7.8$ Hz, 1 H). 13C NMR (101 MHz, DMSO-d$_6$): $\delta = 170.4, 147.5, 141.0, 134.6, 132.4, 130.0, 123.6, 121.8, 117.9, 114.2, 113.1.$

3-(Phenylamino)benzoic acid (4n): According to the general procedure B, 4n was obtained as an off-white solid (0.19 g, 70%). M.p. 107–114 °C. 1H NMR (400 MHz, DMSO-d$_6$): $\delta = 12.83$ (br, 1 H), 8.35 (s, 1 H), 7.64 (s, 1 H), 7.38–7.30 (m, 2 H), 7.29–7.16 (m, 3 H), 7.09 (d, $J = 7.7$ Hz, 2 H), 6.88 (t, $J = 7.3$ Hz, 1 H). 13C NMR (101 MHz, DMSO-d$_6$): $\delta = 170.4, 147.5, 141.0, 134.6, 132.4, 130.0, 123.6, 121.8, 117.9, 114.2, 113.1.$

2-{2-[(2,6-Dichlorophenyl)amino]phenyl}acetic acid (4o): According to the general procedure B, 4o was obtained as a white solid (0.27 g, 72%). M.p. 158–159 °C. 1H NMR (400 MHz, DMSO-d$_6$): $\delta = 12.71$ (br, 1 H), 7.53 (d, $J = 7.6$ Hz, 2 H), 7.25–7.16 (m, 3 H), 7.05 (t, $J = 7.0$ Hz, 1 H), 6.89 (t, $J = 6.6$ Hz, 1 H), 6.32 (t, $J = 7.5$ Hz, 1 H), 3.72 (s, 2 H). 13C NMR (101 MHz, DMSO-d$_6$): $\delta = 173.8, 143.1, 137.6, 131.4, 130.5, 129.6, 128.0, 126.0, 124.4, 121.3, 116.5, 38.3.$

2-(Allyloxy)-N-phenylaniline (4p): According to the general procedure B, 4p was obtained as a brown oil (0.23 g, 80%). 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.31–7.25$ (m, 3 H), 7.16–7.14 (m, 2 H), 6.96–6.78 (m, 4 H), 6.18 (br, 1 H), 6.14–6.04 (m, 1 H), 5.44–5.38 (dq, $J = 17.2, 3.1, 1.6$ Hz, 1 H), 5.32–5.28 (dq, $J = 10.5, 2.7, 1.3$ Hz, 1 H), 4.61–4.59 (dt, $J = 8.9, 1.4$ Hz, 2 H).

Aniline (5a): According to the general procedure C, 5a was obtained as a brown oil (0.11 g, 90%). 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.17–7.12$ (m, 2 H), 6.77–6.73 (m, 1 H), 6.69–6.66 (m, 2 H), 3.46 (br, 2 H). GC-MS: 93 [M].

o-Toluidine (5b): According to the general procedure C, 5b was obtained as a brown oil (0.12 g, 88%). 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.03$ (t, $J = 7.4$ Hz, 2 H), 6.72–6.68 (m, 1 H), 6.67 (d, $J = 7.8$ Hz, 1 H), 3.57 (br, 2 H), 2.16 (s, 3 H). GC-MS: 107 [M].

4-Isopropylaniline (5c): According to the general procedure C, 5c was obtained as a reddish brown oil (0.15 g, 89%). 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.03–7.01$ (m, 2 H), 6.65–6.61 (m, 2 H), 3.34 (br, 2 H), 2.85–2.75 (m, 1 H), 1.20 (d, $J = 6.9$ Hz, 6 H). GC-MS: 135 [M].

4-Methoxyaniline (5d): According to the general procedure C, 5d was obtained as a grey white solid (0.13 g, 80%). M.p. 57–59 °C. 1H NMR (400 MHz, CDCl$_3$): $\delta = 6.75–6.71$ (m, 2 H), 6.65–6.61 (m, 2 H), 3.73 (s, 3 H), 3.39 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M + H]$^+$ calcd for C$_7$H$_{10}$NO: 124.0762; found: 124.0760.

2-Aminophenol (5e): According to the general procedure C, 5e was obtained as a light grey solid (0.10 g, 70%). M.p. 172–173 °C. 1H NMR (400 MHz, CDCl$_3$): $\delta = 6.81–6.67$ (m, 4 H), 4.64 (br, 1 H), 3.65 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M + H]$^+$ calcd for C$_6$H$_8$NO: 110.0606; found: 110.0602.

4-Aminophenol (5f): According to the general procedure C, 5f was obtained as a white solid (87 mg, 62%). M.p. 186–188 °C. 1H NMR (400 MHz, CDCl$_3$): $\delta = 6.68–6.66$ (m, 2 H), 6.61–6.59 (m, 2 H), 4.28 (br, 1 H), 3.42 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M + H]$^+$ calcd for C$_6$H$_8$NO: 110.0606; found: 110.0599.

4-Aminobenzenethiol (5g): According to the general procedure C, 5g was obtained
as a yellow solid (0.12 g, 73%). M.p. 43–45 °C. 1H NMR (400 MHz, CDCl3): δ = 7.25–7.22 (m, 2 H), 6.57–6.53 (m, 2 H), 3.72 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M – H]– calcd for C6H6NS: 124.0221; found: 124.0230.

4-Nitroaniline (5h):[41] According to the general procedure C, 5h was obtained as a yellow solid (0.17 g, 96%). M.p. 144–147 °C. 1H NMR (400 MHz, CDCl3): δ = 8.06 (d, J = 9.0 Hz, 2 H), 6.64–6.61 (m, 2 H), 4.41 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M – H]– calcd for C6H5N2O2: 137.0351; found: 137.0361.

4-Aminobenzonitrile (5i):[42] According to the general procedure C, 5i was obtained as an orange solid (0.14 g, 90%). M.p. 85–86 °C. 1H NMR (400 MHz, CDCl3): δ = 7.41–7.38 (m, 2 H), 6.66–6.63 (m, 2 H), 4.24 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M – H]– calcd for C7H5N2: 117.0453; found: 117.0461.

3-(Trifluoromethyl)aniline (5j):[43] According to the general procedure C, 5j was obtained as a pale yellow liquid (0.20 g, 95%). 1H NMR (400 MHz, CDCl3): δ = 7.22 (d, J = 7.8 Hz, 1 H), 6.70–6.97 (m, 1 H), 6.89–6.88 (m, 1 H), 6.82–6.80 (m, 1 H), 3.82 (br, 2 H). GC-MS: 161 [M].

4-Fluoroaniline (5k):[44] According to the general procedure C, 5k was obtained as a pale-yellow liquid (0.13 g, 93%). 1H NMR (400 MHz, CDCl3): δ = 6.88–6.81 (m, 2 H), 6.63–6.58 (m, 2 H), 3.49 (br, 2 H). GC-MS: 111 [M].

3,5-Bis(trifluoromethyl)aniline (5l):[45] According to the general procedure C, 5l was obtained as a pale-yellow liquid (0.28 g, 95%). 1H NMR (400 MHz, CDCl3): δ = 7.21 (s, 1 H), 7.03 (s, 2 H), 4.06 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M – H]– calcd for C8H4F6N: 228.0248; found: 228.0269.

2-Chloro-6-methylaniline (5m):[46] According to the general procedure C, 5m was obtained as a purple liquid (0.15 g, 82%). 1H NMR (400 MHz, CDCl3): δ = 7.14–7.12 (m, 1 H), 6.96–9.64 (m, 1 H), 6.61 (t, J = 7.8 Hz, 1 H), 3.99 (br, 2 H), 2.19 (s, 3 H). GC-MS: 141 [M].

2-(Trifluoromethoxy)aniline (5n):[47] According to the general procedure C, 5n was obtained as a pale yellow liquid (0.19 g, 82%). 1H NMR (400 MHz, CDCl3): δ = 7.14–7.12 (m, 1 H), 7.09–7.05 (m, 1 H), 6.78 (dd, J =8.0, 1.6 Hz, 1 H), 6.74–6.70 (m, 1 H), 3.84 (br, 2 H). GC-MS: 177 [M].

2-Amino-4-methylbenzoic Acid (5p):[48] According to the general procedure C, 5p was obtained as a grey solid (0.16 g, 89%). M.p. 145 °C. 1H NMR (400 MHz, CDCl3): δ = 7.95–7.92 (m, 1 H), 7.33–7.29 (m, 1 H), 6.70–6.66 (m, 2 H). HRMS (ESI/Q-TOF): m/z [M – H]– calcd for C8H8NO2: 150.0555; found: 150.0574.

1-(4-Aminophenyl)ethan-1-one (5q):[50] According to the general procedure C, 5q was obtained as a light yellow solid (0.15 g, 86%). M.p. 103–105 °C. 1H NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 8.5 Hz, 2 H), 6.64 (d, J = 8.5 Hz, 2 H), 4.20 (br, 2 H), 2.50 (s, 3 H). GC-MS: 135 [M].

5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-amine (5r):[51] According to
the general procedure C, 5r was obtained as a brown oil (0.20 g, 75%). 1H NMR (400 MHz, CDCl3): δ = 7.09 (d, J = 8.4 Hz, 1 H), 6.63 (d, J = 2.5 Hz, 1 H), 6.52 (dd, J = 8.4, 2.5 Hz, 1 H), 3.29 (br, 2 H), 1.64 (s, 4 H), 1.25 (s, 6 H), 1.23 (s, 6 H). GC-MS: 203 [M]

Naphthalen-1-amine (5s): According to the general procedure C, 5s was obtained as a white solid (0.15 g, 82%). M.p. 43–45 °C. 1H NMR (400 MHz, CDCl3): δ = 7.79–7.76 (m, 2 H), 7.46–7.39 (m, 2 H), 7.31–7.24 (m, 2 H), 6.74 (dd, J = 6.9, 1.6 Hz, 1 H), 4.08 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M + H]^+ calcd for C10H10N: 144.0813; found: 144.0809.

Quinolin-5-amine (5t): According to the general procedure C, 5t was obtained as a grey solid (0.16 g, 85%). M.p. 107–110 °C. 1H NMR (400 MHz, CDCl3): δ = 8.88 (dd, J = 4.2, 1.6 Hz, 1 H), 8.18–8.15 (m, 1 H), 7.57 (d, J = 8.4 Hz, 1 H), 7.50 (t, J = 7.4 Hz, 1 H), 7.34–7.31 (m, 1 H), 6.81 (dd, J = 7.4, 1.0 Hz, 1 H), 4.17 (br, 2 H). HRMS (ESI/Q-TOF): m/z [M + H]^+ calcd for C9H9N2: 145.0766; found: 145.0757.

4-Methylpyridin-2-amine (5u): According to the general procedure C, 5u was obtained as a yellow solid (0.12 g, 88%). M.p. 106–107 °C. 1H NMR (400 MHz, CDCl3): δ = 7.94 (dd, J = 5.0, 1.1 Hz, 1 H), 7.27–7.25 (m, 1 H), 6.62–6.59 (m, 1 H), 4.43 (br, 2 H), 2.12 (s, 3 H). GC-MS: 108 [M].

2-Aminonicotinic acid (5v): According to the general procedure C, 5v was obtained as a white solid (0.13 g, 72%). M.p. 107–110 °C. 1H NMR (400 MHz, CDCl3): δ = 8.18–8.16 (m, 1 H), 8.05–8.02 (m, 1 H), 7.20 (br, 1 H), 6.62–6.59 (m, 1 H). HRMS (ESI/Q-TOF): m/z [M + Na]^+ calcd for C6H6N2NaO2: 161.0327; found: 161.0331.

Pyridin-4-amine (5w): According to the general procedure C, 5w was obtained as a white solid (90 mg, 75%). M.p. 158 °C. 1H NMR (400 MHz, CDCl3): δ = 8.21–8.19 (m, 2 H), 6.52–6.50 (m, 2 H), 4.23 (br, 2 H). GC-MS: 94 [M].

Pyridin-2-amine (5x): According to the general procedure C, 5x was obtained as a white solid (94 mg, 78%). M.p. 56–58 °C. 1H NMR (400 MHz, CDCl3): δ = 8.06–8.05 (m, 1 H), 7.42–7.37 (m, 1 H), 6.63–6.60 (m, 1 H), 6.49–6.46 (m, 1 H), 4.58 (br, 2 H). GC-MS: 108 [M].

4-Methylpyridin-3-amine (5y): According to the general procedure C, 5y was obtained as a brown solid (0.11 g, 80%). M.p. 105 °C. 1H NMR (400 MHz, CDCl3): δ = 8.01 (s, 1 H), 7.93 (d, J = 4.8 Hz, 1 H), 6.94 (d, J = 4.8 Hz, 1 H), 3.64 (br, 2 H), 2.12 (s, 3 H). HRMS (ESI/Q-TOF): m/z [M + H]^+ calcd for C6H9N2: 109.0766; found: 109.0759.

1,2,3,4-Tetrahydroacridin-9-amine (5z): According to the general procedure C, 5z was obtained as a white solid (0.12 g, 48%). M.p. 177–179 °C. 1H NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.1 Hz, 1 H), 7.70–7.68 (m, 1 H), 7.58–7.54 (m, 1 H), 7.38–7.34 (m, 1 H), 4.66 (br, 2 H), 3.03 (t, J = 6.2 Hz, 2 H), 2.61 (t, J = 6.0 Hz, 2 H), 1.98–1.89 (m, 4 H). HRMS (ESI/Q-TOF): m/z [M + H]^+ calcd for C13H15N2: 199.1235; found: 199.1229.

2-(Allyloxy)aniline (5aa): According to the general procedure C, 5aa was obtained as brown oil (0.14 g, 72%). 1H NMR (400 MHz, CDCl3): δ = 6.81–6.77 (m, 2 H), 6.73–6.67 (m, 2 H), 6.12–6.03 (m, 1 H), 5.42 (dq, J = 17.2, 3.2, 1.6 Hz, 1 H), 5.26 (dq, J = 10.5, 2.8, 1.4 Hz, 1 H), 4.55 (dt, J = 5.3, 1.5 Hz, 2 H), 3.64 (br, 2 H). GC-MS: 149 [M].
References
(1) Recanatini M., Cavalli A., Belluti F., Piazz L., Rampa A., Bisi A., Gobbi S.,
1981, 46: 3634
(3) Adapa V. R., Ramu E., Alam M. M.; Synlett; 2004, 1747
(6) Lu Z., Twieg R. J.; Tetrahedron; 2005, 61: 9038
Chem.; 2011, 76: 7842
2009, 131: 12100
(13) Lo Meo P., D’Anna F., Gruttadauria M., Riela S., Noto R.; Tetrahedron; 2004, 60:
9099
(16) Semple G., Skinner P. J., Cherrier M. C., Webb P. J., Sage C. R., Tamura S. Y.,
2004, 60: 3045
2018, 140: 7390
(21) Tian X., Wu R. M; Liu G., Li Z. B; Wei H. L; Yang H., Shin D. S; Wang L. Y; Zuo
H.; ARKIVOC; 2011, (x): 118
(23) Wang Z., Fu H., Jiang Y., Zhao Y.; Synlett; 2008, 2540
(24) Kidwai M., Mishra N. K., Bhardwaj S., Jahan A., Kumar A., Mozumdar S.;
ChemCatChem; 2010, 2: 1312
2009, 635

(40) Gilman H., Gainer G. C.; *J. Am. Chem. Soc.*; **1949**, *71*: 1747

(42) Hatsuda M., Seki M.; *Tetrahedron*; **2005**, *61*: 9908

(45) Goriya Y., Ramana C. V.; *Tetrahedron*; **2010**, *66*: 7642

(48) Zhao H., Fu H., Qiao R.; *J. Org. Chem.*; **2010**, *75*: 3311

(49) Levesque P., Fournier P. A.; *J. Org. Chem.*; **2010**, *75*: 7033

(53) Spencer J., Rathnam R. P., Patel H., Anjum N.; *Tetrahedron*; **2008**, *64*: 10195