Supporting Information

Ph₃P/I⁻-promoted dichlorination or dibromination of epoxide s with XCH₂CH₂X (X = Cl or Br)

Jin Long, a,b Jia Chen, b Rong Li, a Zhuo Liu, a,b Xuan Xiao, a,b Jin-Hong Lin, b*

Xing-Zheng, a* Ji-Chang Xiao b*

a Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Western Changsheng Road, Hengyang, Hunan, 421001, China.

b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, China.

Content

1. General information ... S2

2. Optimization of the reaction conditions for dibromination S2

3. Typical procedure for the preparation of 2 and 3 S3

4. References and notes .. S9

5. Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra S10
1. General information

Solvents and reagents were purchased from commercial sources and used as received unless otherwise noted. 1H, 13C, 19F and 31P NMR spectra were detected on a 500 MHz, 400MHz or 300 MHz NMR spectrometer. Data for 1H NMR, 13C NMR, 19F NMR and 31P NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (J) in Hz). Mass spectra were obtained on a GC-MS or LC-MS. High resolution mass data were recorded on a high resolution mass spectrometer in the EI or ESI mode.

2. Optimization of the reaction conditions for dibromination

Table 1. Optimization of the reaction conditions for dibrominationa

<table>
<thead>
<tr>
<th>entry</th>
<th>ratio b</th>
<th>temp. (°C)</th>
<th>time (h)</th>
<th>yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1.2:1.4</td>
<td>RT</td>
<td>4</td>
<td>69%</td>
</tr>
<tr>
<td>2</td>
<td>1:1.2:1.4</td>
<td>40</td>
<td>4</td>
<td>73%</td>
</tr>
<tr>
<td>3</td>
<td>1:1.2:1.4</td>
<td>60</td>
<td>4</td>
<td>67%</td>
</tr>
<tr>
<td>4</td>
<td>1:1.2:1.4</td>
<td>80</td>
<td>4</td>
<td>62%</td>
</tr>
<tr>
<td>5</td>
<td>1:1.2:1.4</td>
<td>40</td>
<td>1</td>
<td>76%</td>
</tr>
<tr>
<td>6</td>
<td>1:1.2:1.4</td>
<td>40</td>
<td>2</td>
<td>82%</td>
</tr>
<tr>
<td>7</td>
<td>1:1.2:1.4</td>
<td>40</td>
<td>3</td>
<td>75%</td>
</tr>
<tr>
<td>8</td>
<td>1:1.4:1.4</td>
<td>40</td>
<td>4</td>
<td>73%</td>
</tr>
<tr>
<td>9</td>
<td>1:1.2:1.4</td>
<td>40</td>
<td>5</td>
<td>82%</td>
</tr>
</tbody>
</table>

aReaction conditions: substrate 1a (0.25 mmol), Ph$_3$P, nBu$_4$NI and BrCH$_2$CH$_2$Br (2.5 mL) at the indicated temperature for the indicated time; RT = Room temperature; bMolar ratio of 1a:Ph$_3$P:nBu$_4$NI; cThe yield was determined by 1H NMR with the use of PhCH$_3$ as an internal standard.
3. Typical procedure for the preparation of 2, 3

3.1 Procedure for the preparation of 2

![Chemical structure](image)

Epoxide 1a (1.0 equiv, 0.5 mmol, 60.1 mg), Ph₃P (1.2 equiv, 0.6 mmol, 157.4 mg), Ph₄BuNI (1.4 equiv, 0.7 mmol, 258.6 mg) and ClCH₂CH₂Cl (5.0 mL) were added into a 10 mL sealed tube under a N₂ atmosphere. The resulting mixture was stirred at 80 °C for 4 h. After the reaction solvent was removed by concentration under vacuum, the residue was subjected to flash column chromatography with hexane/ethyl acetate (100:1-4:1) as the eluent to afford the product 2a.

![Product 2a](image)

(1,2-dichloroethyl)benzene [1]: 64%; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.27 (m, 5H), 4.99 (dd, J = 7.9, 6.6 Hz, 1H), 4.09 – 3.76 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 138.01, 129.17, 128.83, 127.41, 61.77, 48.36.

![Product 2b](image)

1-(1,2-dichloroethyl)-4-fluorobenzene [1]: 47%; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.28 (m, 2H), 7.14 – 6.97 (m, 2H), 4.97 (dd, J = 8.4, 6.2 Hz, 1H), 3.97 (dd, J = 11.3, 6.2 Hz, 1H), 3.87 (dd, J = 11.3, 8.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.95 – -112.19 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 162.93 (d, J = 248.7 Hz), 133.89 (d, J = 3.4 Hz), 129.28 (d, J = 8.3 Hz), 115.82 (d, J = 21.8 Hz), 60.80, 48.23.
(2,3-dichloropropyloxy)benzene: 88%; ^{1}H NMR (400 MHz, CDCl$_3$) δ 7.32 (t, $J = 8.0$ Hz, 2H), 7.02 (t, $J = 7.4$ Hz, 1H), 6.95 (d, $J = 8.4$ Hz, 2H), 4.42 – 4.34 (m, 1H), 4.28 (d, $J = 5.8$ Hz, 2H), 4.01 – 3.87 (m, 2H). ^{13}C NMR (101 MHz, CDCl$_3$) δ 158.01, 129.68, 121.73, 114.80, 68.18, 57.39, 45.10.

1-(tert-butyl)-4-(2,3-dichloropropoxy)benzene: 86%; Light yellow liquid. ^{1}H NMR (400 MHz, CDCl$_3$) δ 7.31 (d, $J = 7.6$ Hz, 2H), 6.86 (d, $J = 7.4$ Hz, 2H), 4.41 – 4.18 (m, 3H), 4.03 – 3.80 (m, 2H), 1.29 (s, 9H). ^{13}C NMR (101 MHz, CDCl$_3$) δ 155.64, 144.38, 126.38, 114.15, 68.13, 57.35, 45.07, 34.11, 31.47. IR (neat) ν = 2962, 1514, 1459, 1364, 1295, 1246, 1185, 1036, 829 cm$^{-1}$; HRMS (EI) Calcd for C$_{13}$H$_{18}$Cl$_2$O$^+[M]^+$: 260.0735, Found: 260.0732.

((3,4-dichlorobutoxy)methyl)benzene: 73%; Colorless liquid. ^{1}H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.25 (m, 5H), 4.52 (s, 2H), 4.41 – 4.22 (m, 1H), 3.81 – 3.69 (m, 2H), 3.68 – 3.63 (m, 2H), 2.37 – 2.23 (m, 1H), 1.99 – 1.85 (m, 1H). ^{13}C NMR (101 MHz, CDCl$_3$) δ 138.10, 128.44, 127.73, 127.65, 73.18, 66.30, 58.23, 48.78, 35.48. IR (neat) ν = 3030, 2921, 2864, 1455, 1361, 1116, 1028, 737, 698 cm$^{-1}$; HRMS (EI) Calcd for C$_{13}$H$_{18}$Cl$_2$O$^+[M]^+$: 232.0422, Found: 232.0429.
1-(2,3-dichloropropoxy)naphthalene Chloroform-d: 70%; Light yellow solid. mp 44°C. 1H NMR (400 MHz, CDCl$_3$) δ 8.29 – 8.19 (m, 1H), 7.85 – 7.75 (m, 1H), 7.55 – 7.44 (m, 3H), 7.37 (t, $J = 7.9$ Hz, 1H), 6.83 (d, $J = 7.6$ Hz, 1H), 4.56 – 4.37 (m, 3H), 4.11 – 3.93 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 153.65, 134.59, 127.59, 126.65, 125.68, 125.56, 125.52, 121.76, 121.32, 105.23, 68.34, 57.42, 45.12. IR (neat) ν = 1581, 1458, 1401, 1390, 1270, 1242, 1103, 1073, 1020, 932, 791, 769, 748 cm$^{-1}$; HRMS (EI) Calcd for C$_{13}$H$_{12}$Cl$_2$O$^+$: 254.0265, Found: 254.0274.

![2g]

4-(2,3-dichloropropoxy)-9H-carbazole: 67%; Light yellow solid. mp 96°C. 1H NMR (400 MHz, CDCl$_3$) δ 8.29 (d, $J = 7.8$ Hz, 1H), 8.02 (s, 1H), 7.44 – 7.36 (m, 2H), 7.29 – 7.23 (m, 1H), 7.06 (d, $J = 8.1$ Hz, 1H), 6.66 (d, $J = 7.9$ Hz, 1H), 4.63 – 4.49 (m, 3H), 4.16 – 4.04 (m, 1H), 4.06 – 4.00 (m, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 154.33, 141.03, 138.79, 126.65, 125.28, 123.03, 122.36, 119.91, 112.84, 110.15, 104.44, 101.23, 68.01, 57.56, 45.16. IR (neat) ν = 3399, 1584, 1505, 1454, 1439, 1345, 1257, 1210, 1098, 784, 752, 729, 719 cm$^{-1}$; HRMS (EI) Calcd for C$_{15}$H$_{13}$Cl$_2$NO$^+$: 293.0374, Found: 293.0381.

![2h]

3-(2,3-dichloropropoxy)prop-1-ene: 84%; Yellow liquid. 1H NMR (400 MHz, CDCl$_3$) δ 5.96 – 5.80 (m, 1H), 5.34 – 5.12 (m, 2H), 4.20 – 4.11 (m, 1H), 4.05 (d, $J = 5.6$ Hz, 2H), 3.88 – 3.75 (m, 2H), 3.75 – 3.67 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) δ 134.04, 117.78, 72.47, 70.19, 58.27, 45.26. IR (neat) ν = 2916, 1385, 1261, 1111, 1025, 873, 802, 618 cm$^{-1}$; HRMS (EI) Calcd for C$_6$H$_{10}$Cl$_2$O$^+$: 168.0109, Found: 168.0115.
2,3-dichloropropyl methacrylate: 88%; Light yellow liquid. 1H NMR (400 MHz, CDCl$_3$) δ 6.15 (s, 1H), 5.62 (s, 1H), 4.55 – 4.39 (m, 2H), 4.33 – 4.23 (m, 1H), 3.82 – 3.75 (m, 2H), 1.95 (dd, J = 1.2 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 166.59, 135.58, 126.65, 64.44, 56.79, 46.68, 18.27. IR (neat) ν = 2959, 1725, 1638, 1455, 1319, 1296, 1159, 946, 813 cm$^{-1}$.

1,2-dichlorododecane$^{[3]}$: 57%; 1H NMR (400 MHz, CDCl$_3$) δ 4.07 – 3.95 (m, 1H), 3.78 – 3.58 (m, 2H), 2.02 – 1.89 (m, 1H), 1.75 – 1.62 (m, 1H), 1.44 – 1.18 (m, 16H), 0.86 (t, J = 6.6 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 61.28, 48.28, 35.07, 31.90, 29.57, 29.53, 29.41, 29.32, 28.99, 25.82, 22.69, 14.12.

1,2-dichlorotetradecane: 74%; Colorless liquid. 1H NMR (400 MHz, CDCl$_3$) δ 4.09 – 3.94 (m, 1H), 3.78 – 3.55 (m, 2H), 2.02 – 1.91 (m, 1H), 1.74 – 1.63 (m, 1H), 1.41 – 1.09 (m, 20H), 0.87 (t, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 61.26, 48.27, 35.07, 31.94, 29.68, 29.66, 29.63, 29.55, 29.43, 29.38, 29.00, 25.83, 22.72, 14.14. IR (neat) ν = 2854, 1466, 727, 664 cm$^{-1}$; HRMS (EI) Calcd for C$_{14}$H$_{28}$Cl$_2$[M]$^+$: 266.1568, Found: 266.1576.

1,2-dichlorooctane$^{[4]}$: 65%; 1H NMR (400 MHz, CDCl$_3$) δ 4.14 – 3.92 (m, 1H), 3.78 – 3.58 (m, 2H), 2.05 – 1.86 (m, 1H), 1.78 – 1.63 (m, 1H), 1.60 – 1.47 (m, 1H), 1.46 – 1.20 (m, 7H), 0.88 (t, J = 6.7 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 61.27, 48.28, 35.07, 31.60, 28.65, 25.78, 22.55, 14.04.
7,8-dichlorooct-1-ene[^3]: 62%; ¹H NMR (400 MHz, CDCl₃) δ 5.89 – 5.63 (m, 1H),
5.10 – 4.84 (m, 2H), 4.08 – 3.95 (m, 1H), 3.82 – 3.53 (m, 2H), 2.10 – 2.03 (m, 2H),
2.03 – 1.93 (m, 1H), 1.76 – 1.64 (m, 1H), 1.59 – 1.51 (m, 1H), 1.47 – 1.36 (m, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 138.43, 114.68, 61.08, 48.17, 34.84, 33.45, 28.18, 25.24.

3.2 Procedure for the preparation of 3

Epoxide 1a (1.0 equiv, 0.5 mmol, 60.1 mg), Ph₃P (1.2 equiv, 0.6 mmol, 157.4 mg),
Bu₄NI (1.4 equiv, 0.7 mmol, 258.6 mg) and BrCH₂CH₂Br (5.0 mL) were added into a
10 mL sealed tube under a N₂ atmosphere. The resulting mixture was stirred at 40 °C
for 2 h. After the reaction solvent was removed by concentration under vacuum, the
residue was subjected to flash column chromatography with hexane/ethyl acetate
(100:1-4:1) as the eluent to afford the product 3a.

(1,2-dibromoethyl)benzene[^5]: 57%; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m,
5H), 5.13 (dd, J = 10.6, 5.5 Hz, 1H), 4.13 – 3.94 (m, 2H). ¹³C NMR (101 MHz,
CDCl₃) δ 138.62, 129.19, 128.87, 127.67, 50.89, 35.03.

1-(tert-butyl)-4-(2,3-dibromopropoxy)benzene: 62%; Light yellow liquid. ¹H NMR
(400 MHz, CDCl₃) δ 7.31 (d, J = 7.5 Hz, 2H), 6.87 (d, J = 7.5 Hz, 2H), 4.50 – 4.25 (m,
3H), 4.03 – 3.80 (m, 2H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.64, 144.37,
126.37, 114.25, 69.05, 47.84, 34.12, 32.82, 31.47. IR (neat) ν =2963, 2869, 1513,
1457, 1294, 1265, 1244, 1185, 1119, 1048, 831, 739, 705 cm\(^{-1}\); HRMS (EI) Calcd for \(\text{C}_{13}\text{H}_{18}\text{Br}_2\text{O}[\text{M}]^+\): 347.9724, Found: 347.9727.

![3c](image)

4-(2,3-dibromopropoxy)-9H-carbazole: 43%; Light yellow solid. mp 107°C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.35 (d, \(J = 7.8\) Hz, 1H), 8.06 (s, 1H), 7.44 – 7.37 (m, 2H), 7.33 (t, \(J = 8.0\) Hz, 1H), 7.29 – 7.23 (m, 1H), 7.08 (d, \(J = 8.1\) Hz, 1H), 6.66 (d, \(J = 7.9\) Hz, 1H), 4.76 – 4.57 (m, 3H), 4.12 – 3.96 (m, 2H). \(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.29, 141.01, 138.76, 126.62, 125.24, 123.16, 122.38, 119.88, 112.86, 110.09, 104.39, 101.22, 68.78, 47.84, 32.74. IR (neat) \(\nu = \)3400, 1583, 1504, 1452, 1439, 1344, 1301, 1255, 1212, 1203, 1093, 783, 751, 719 cm\(^{-1}\); HRMS (ESI) Calcd for \(\text{C}_{15}\text{H}_{13}\text{Br}_2\text{NO}[\text{M}]^+\): 381.9438.

![3d](image)

1,2-dibromododecane\(^6\): 53%; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.21 – 4.10 (m, 1H), 3.83 (dd, \(J = 10.2, 4.4\) Hz, 1H), 3.61 (t, \(J = 10.0\) Hz, 1H), 2.20 – 2.04 (m, 1H), 1.85 – 1.67 (m, 1H), 1.45 – 1.17 (m, 16H), 0.86 (t, \(J = 6.6\) Hz, 3H). \(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 53.17, 36.36, 36.00, 31.88, 29.56, 29.52, 29.38, 29.30, 28.80, 26.74, 22.67, 14.12.

![3e](image)

1,2-dibromotetradecane\(^7\): 62%; \(^1\)H NMR (400 MHz, CDCl\(_3\))\(\delta\) 4.23 – 4.08 (m, 1H), 3.83 (dd, \(J = 10.2, 4.4\) Hz, 1H), 3.61 (t, \(J = 10.0\) Hz, 1H), 2.19 – 2.03 (m, 1H), 1.83 – 1.66 (m, 1H), 1.44 – 1.15 (m, 20H), 0.86 (t, \(J = 6.8\) Hz, 3H). \(^1\)C NMR (101 MHz,
CDCl$_3$ δ 53.19, 36.38, 36.05, 31.93, 29.66, 29.64, 29.61, 29.53, 29.39, 29.36, 28.82, 26.76, 22.70, 14.13.

4. References and Notes

5. Copies of 1H NMR, 19F NMR and 13C NMR spectra

1H NMR

13C NMR
13C NMR

1H NMR
13C NMR

1H NMR
13C NMR

^{1}H NMR
13C NMR

![13C NMR spectrum of 3b](image)

1H NMR

![1H NMR spectrum of 3c](image)
13C NMR

$\text{CH}_3(\text{CH}_2)_x\text{Br}$

$3e$