Supporting Information
for DOI: 10.1055/s-0036-1588440
© Georg Thieme Verlag KG Stuttgart · New York 2017
A Rapid and Diastereoselective Synthesis of 2-Deoxy-2-iodo-α-glycosides and its Mechanism for Diastereoselectivity

Wenjiao Yuan,a,c Yali Liu,b Chunbao Li,*a
aDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300350, China.
bDepartment of Pharmaceutical Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China.
cDepartment of Biochemical Engineering, Tianjin Modern Vocational Technology College, Tianjin 300350, China.

lichunbao@tju.edu.cn

Contents

1. General Information (S2)
2. Experimental data for compounds 2a-m (S2-S6)
3. 1H NMR and 13C NMR spectra for 2a-m (S7-S19)
4. Reference (S20)
1. General Information.

NMR spectra were recorded with 400 or 600 MHz spectrometer for 1H NMR and 100 or 151 MHz for 13C{1H} NMR using TMS as an internal standard. Chemical shifts (δ) are reported relative to TMS (1H) or CDCl$_3$ (13C) and multiplicities are reported as follows: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); td (triplet of doublet); m (multiplets); ddt (doublet of doublet of triplet) and etc.. High resolution mass spectra (HRMS) were recorded on a QTOF mass analyzer with electrospray ionization (ESI).

2. Experimental data for compounds 2a-m

General Procedures for Preparation of 2-Deoxy-2-iodo-α-glycosides:

To a solution of glycal (1 mmol), alcohol (10 mmol) and PhI(OAc)$_2$ (1.2 mmol) in CH$_3$CN (4 mL) was added I$_2$ (0.6 mmol), the mixture was stirred at rt for 15 min. After addition of ethyl acetate (50 mL) to reaction mixture, the organic phase was washed with saturated Na$_2$S$_2$O$_3$, water and brine, dried over anhydrous Na$_2$SO$_4$ and concentrated. The residue was further purified by column chromatography to afford final product.

Cyclohexyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranoside (2a): 438.5 mg, yield: 88%, colorless syrup. 1H NMR (400 MHz, CDCl$_3$) δ 5.37 (t, J = 9.7 Hz, 1H), 5.32 (s, 1H), 4.69 (dd, J = 9.4, 4.3 Hz, 1H), 4.51 (dd, J = 4.2, 0.9 Hz, 1H), 4.26 – 4.16 (m, 2H), 4.16 – 4.09 (m, 1H), 3.60 (ddd, J = 13.1, 9.1, 3.8 Hz, 1H), 2.12 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.92 – 1.84 (m, 2H), 1.78 – 1.72 (m, 2H), 1.59 – 1.50 (m, 1H), 1.48 – 1.37 (m, 1H), 1.36 – 1.20 (m, 4H). 13C NMR (101 MHz, CDCl$_3$) δ 170.69, 169.87, 169.56, 99.59, 76.92, 69.20, 69.15, 67.86, 62.38, 33.19, 31.59, 30.70, 25.45, 24.10, 23.84, 20.98, 20.73, 20.68.
Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-D-mannopyranoside (2b): 364.8 mg (α/β:4/1), yield: 85%, colorless syrup. 1H NMR (400 MHz, CDCl$_3$) δ 5.39 (t, J = 9.7 Hz, 1H), 5.31 (dd, J = 11.1, 9.1 Hz, 0.25H), 5.10 (s, 1H), 4.99 (t, J = 9.6 Hz, 0.25H), 4.65 (dd, J = 9.5, 4.4 Hz, 1H), 4.51 (d, J = 4.4 Hz, 1H), 4.02 (ddd, J = 9.9, 4.8, 2.4 Hz, 1H), 3.90 (dd, J = 11.2, 9.0 Hz, 0.25H), 3.76 (ddd, J = 9.9, 4.6, 2.3 Hz, 0.25H), 3.59 (s, 0.75H), 3.43 (s, 3H), 2.14 (s, 3H), 2.11 (s, 0.75H), 2.10 (s, 3H), 2.07 (s, 3H), 2.06 (s, 0.75H), 2.03 (s, 0.75H). 13C NMR (101 MHz, CDCl$_3$) δ 170.69, 169.83, 169.49, 102.32, 69.03, 67.54, 62.27, 55.43, 29.27, 20.93, 20.74, 20.65.

Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranoside (2c): 409.6 mg, yield: 92%, white solid. 1H NMR (400 MHz, CDCl$_3$) δ 5.39 (t, J = 9.7 Hz, 1H), 5.20 (s, 1H), 4.68 (dd, J = 9.5, 4.4 Hz, 1H), 4.54 (dd, J = 4.3, 0.9 Hz, 1H), 4.25 (dd, J = 12.2, 4.9 Hz, 1H), 4.16 (dd, J = 12.2, 2.4 Hz, 1H), 4.05 (ddd, J = 9.9, 4.7, 2.4 Hz, 1H), 3.75 (dq, J = 9.7, 7.1 Hz, 1H), 3.56 (dq, J = 9.7, 7.1 Hz, 1H), 2.13 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 170.71, 169.86, 169.51, 101.11, 69.12, 69.07, 67.68, 64.11, 62.30, 29.82, 20.97, 20.75, 20.67, 14.98.

Propyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-D-mannopyranoside (2d): 412.8 mg, yield: 90%, white solid. 1H NMR (400 MHz, CDCl$_3$) δ 5.37 (t, J = 9.7 Hz, 1H), 5.18 (s, 1H), 4.66 (dd, J = 9.4, 4.4 Hz, 1H), 4.54 (d, J = 4.2 Hz, 1H), 4.23 (dd, J = 12.2, 4.9 Hz, 1H), 4.16 (dd, J = 12.2, 2.3 Hz, 1H), 4.03 (ddd, J = 9.9, 4.7, 2.4 Hz, 1H), 3.63 (dt, J = 9.4, 6.7 Hz, 1H), 3.44 (dt, J = 9.5, 6.6 Hz, 1H), 2.13 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.69 – 1.59 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 170.63, 169.80, 169.47, 101.23, 70.19, 69.10, 69.03, 67.60, 62.26, 29.80, 22.62, 20.94, 20.72, 20.65, 10.59.
\(i \)-Propyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\(\alpha \)-D-mannopyranoside (2e): \(^2\) 429.8 mg, yield: 98%, colorless syrup. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.37 (t, \(J = 9.7 \) Hz, 1H), 5.27 (s, 1H), 4.66 (dd, \(J = 9.4, 4.3 \) Hz, 1H), 4.48 (dd, \(J = 4.3, 1.2 \) Hz, 1H), 4.23 (dd, \(J = 12.2, 4.9 \) Hz, 1H), 4.17 – 4.06 (m, 2H), 3.92 (dt, \(J = 12.3, 6.2 \) Hz, 1H), 2.11 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 1.23 (d, \(J = 6.2 \) Hz, 3H), 1.17 (d, \(J = 6.1 \) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 170.55, 169.72, 169.42, 99.58, 71.03, 69.04, 67.71, 62.27, 30.57, 23.02, 21.59, 20.91, 20.66, 20.61.

Butyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\(\alpha \)-D-mannopyranoside (2f): \(^2\) 399.6 mg, yield: 85%, colorless syrup. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.38 (t, \(J = 9.7 \) Hz, 1H), 5.18 (s, 1H), 4.66 (dd, \(J = 9.5, 4.4 \) Hz, 1H), 4.57 – 4.52 (m, 1H), 4.24 (dd, \(J = 12.2, 4.9 \) Hz, 1H), 4.16 (dd, \(J = 12.2, 2.3 \) Hz, 1H), 4.03 (dd, \(J = 9.9, 4.8, 2.4 \) Hz, 1H), 3.69 (dt, \(J = 9.6, 6.7 \) Hz, 1H), 3.48 (dt, \(J = 9.6, 6.5 \) Hz, 1H), 2.13 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.65 – 1.55 (m, 2H), 1.46 – 1.34 (m, 2H), 0.95 (t, \(J = 7.4 \) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 170.69, 169.85, 169.51, 101.30, 69.15, 69.09, 68.41, 67.65, 62.32, 31.41, 29.80, 20.96, 20.74, 20.67, 19.30, 13.79.

\(i \)-Butyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\(\alpha \)-D-mannopyranoside (2g): 376.4 mg, yield: 80%, colorless syrup. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 5.38 (t, \(J = 9.7 \) Hz, 1H), 5.17 (s, 1H), 4.66 (dd, \(J = 9.4, 4.4 \) Hz, 1H), 4.56 (d, \(J = 4.3 \) Hz, 1H), 4.23 (dd, \(J = 12.2, 4.9 \) Hz, 1H), 4.17 (dd, \(J = 12.2, 2.4 \) Hz, 1H), 4.02 (ddd, \(J = 9.9, 4.7, 2.4 \) Hz, 1H), 3.45 (dd, \(J = 9.2, 6.9 \) Hz, 1H), 3.25 (dd, \(J = 9.3, 6.4 \) Hz, 1H), 2.13 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.90 (td, \(J = 13.3, 6.6 \) Hz, 1H), 0.95 (dd, \(J = 6.7, 3.5 \) Hz, 6H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 170.66, 169.83, 169.51, 101.40, 75.17, 69.18, 69.10, 67.62, 62.29, 29.73, 28.26, 20.95, 20.72, 20.65, 19.30, 19.22; HRMS calcd for C\(_{16}\)H\(_{25}\)O\(_8\)INa [M+Na\(^+\)]: 495.0486, found: 495.0495.
\[\text{-Butyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\(\alpha\)-D-mannopyranoside (2h)}: \text{431.6 mg, yield: 94\%, light yellow solid.} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta \text{ 5.42 (s, 1H), 5.37 (t, }J=9.6\text{ Hz, 1H), 4.70 (dd, }J=9.4, 4.2\text{ Hz, 1H), 4.42 (dd, }J=4.2, 1.1\text{ Hz, 1H), 4.27 – 4.19 (m, 2H), 4.10 (q, }J=5.0\text{ Hz, 1H), 2.11 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.28 (s, 9H).} \]
\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta \text{ 170.63, 169.84, 169.51, 96.14, 76.82, 69.12, 68.68, 67.89, 62.41, 32.03, 28.36, 20.97, 20.70, 20.66.}\]

\[\text{Menthyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\(\alpha\)-D-mannopyranoside (2i): 455.7 mg, yield: 82\%, white solid.} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta \text{ 5.35 (t, }J=9.3\text{ Hz, 1H), 5.26 (s, 1H), 4.67 (dd, }J=9.4, 4.3\text{ Hz, 1H), 4.53 (dd, }J=4.2, 1.2\text{ Hz, 1H), 4.25 – 4.12 (m, 3H), 3.38 (td, }J=10.7, 4.3\text{ Hz, 1H), 2.12 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.69 – 1.61 (m, 2H), 1.44 – 1.26 (m, 3H), 1.10 – 0.82 (m, 10H), 0.78 (d, }J=7.0\text{ Hz, 3H).} \]
\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta \text{ 170.69, 169.91, 169.55, 103.05, 82.79, 69.33, 69.14, 67.89, 62.60, 48.27, 42.49, 34.17, 31.62, 30.29, 29.69, 25.97, 23.34, 22.29, 20.96, 20.92, 20.76, 20.68, 16.34.}\]

\[\text{-Propyl 3,4-di-O-acetyl-2-deoxy-2-iodo-D-lyxopyranoside (2j): 316.2 mg (\(\alpha/\beta\):4/3), yield: 82\%, colorless syrup.} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta \text{ 5.30 (dd, }J=11.0, 9.1\text{ Hz, 1H), 5.01 – 4.93 (m, 2.5H), 4.93 – 4.85 (m, 1H), 4.63 (d, }J=8.7\text{ Hz, 1H), 4.43 (dd, }J=4.9, 3.4\text{ Hz, 0.75H), 4.12 (dd, }J=11.5, 5.5\text{ Hz, 1H), 4.03 – 3.78 (m, 4H), 3.37 (dd, }J=11.5, 10.3\text{ Hz, 1H), 2.15 (s, 2.25H), 2.11 (s, 3H), 2.09 (s, 2.25H), 2.02 (s, 3H), 1.26 – 1.23 (m, 8.25H), 1.19 (d, }J=6.1\text{ Hz, 2.25H).} \]
\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta \text{ 169.73, 169.55, 169.32, 102.15, 99.12, 75.04, 72.85, 71.41, 70.17, 69.72, 68.30, 62.87, 61.82, 30.11, 29.49, 26.87, 23.28, 23.21, 21.54, 20.95, 20.87, 20.70.} \]
\[^{\text{HRMS ealed for C}_{12}\text{H}_{19}\text{O}_{6}\text{INa [M+Na}^+\text{]: 409.0119, found: 409.0111.}\]

\[\text{-Propyl 3,4-di-O-acetyl-2-deoxy-2-iodo-\(\alpha\)-D-arabinopyranoside (2k): 337.2 mg, yield: 87\%, white solid.} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta \text{ 5.53 (s, 1H), 5.19 – 5.04 (m, 1H), 4.87 (d, }J=7.5\text{ Hz, 1.19 (d, }J=6.1\text{ Hz, 2.25H).} \]
\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta \text{ 169.73, 169.55, 169.32, 102.15, 99.12, 75.04, 72.85, 71.41, 70.17, 69.72, 68.30, 62.87, 61.82, 30.11, 29.49, 26.87, 23.28, 23.21, 21.54, 20.95, 20.87, 20.70.} \]
\[^{\text{HRMS ealed for C}_{12}\text{H}_{19}\text{O}_{6}\text{INa [M+Na}^+\text{]: 409.0119, found: 409.0111.}\]

\[\text{-Propyl 3,4-di-O-acetyl-2-deoxy-2-iodo-\(\alpha\)-D-arabinopyranoside (2l): 337.2 mg, yield: 87\%, white solid.} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta \text{ 5.53 (s, 1H), 5.19 – 5.04 (m, 1H), 4.87 (d, }J=7.5\text{ Hz, 1.19 (d, }J=6.1\text{ Hz, 2.25H).} \]
\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta \text{ 169.73, 169.55, 169.32, 102.15, 99.12, 75.04, 72.85, 71.41, 70.17, 69.72, 68.30, 62.87, 61.82, 30.11, 29.49, 26.87, 23.28, 23.21, 21.54, 20.95, 20.87, 20.70.} \]
\[^{\text{HRMS ealed for C}_{12}\text{H}_{19}\text{O}_{6}\text{INa [M+Na}^+\text{]: 409.0119, found: 409.0111.}\]

\[\text{-Propyl 3,4-di-O-acetyl-2-deoxy-2-iodo-\(\alpha\)-D-arabinopyranoside (2l): 337.2 mg, yield: 87\%, white solid.} \]
\[^1\text{H NMR (400 MHz, CDCl}_3\text{) }\delta \text{ 5.53 (s, 1H), 5.19 – 5.04 (m, 1H), 4.87 (d, }J=7.5\text{ Hz, 1.19 (d, }J=6.1\text{ Hz, 2.25H).} \]
\[^{13}\text{C NMR (101 MHz, CDCl}_3\text{) }\delta \text{ 169.73, 169.55, 169.32, 102.15, 99.12, 75.04, 72.85, 71.41, 70.17, 69.72, 68.30, 62.87, 61.82, 30.11, 29.49, 26.87, 23.28, 23.21, 21.54, 20.95, 20.87, 20.70.} \]
\[^{\text{HRMS ealed for C}_{12}\text{H}_{19}\text{O}_{6}\text{INa [M+Na}^+\text{]: 409.0119, found: 409.0111.}\]
Hz, 1H), 4.16 (dd, J = 7.5, 3.2 Hz, 1H), 4.02 – 3.90 (m, 2H), 3.81 (dd, J = 11.3, 9.4 Hz, 1H), 2.20
(s, 3H), 2.03 (s, 3H), 1.24 (dd, J = 8.1, 6.3 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 169.68,
169.54, 99.64, 72.41, 70.23, 66.67, 61.76, 27.59, 23.29, 21.65, 20.80, 20.71. HRMS calcd for
C12H20O6IH [M+H+]: 387.0299, found: 387.0302.

i-Propyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-talopyranoside (2l): 437.0 mg, yield: 95%,
white solid. 1H NMR (400 MHz, CDCl3) δ 5.42 (s, 1H), 5.41 – 5.38 (m, 1H), 4.98 – 4.93 (m, 1H),
4.38 (td, J = 6.5, 1.7 Hz, 1H), 4.24 (d, J = 5.1 Hz, 1H), 4.19 (dd, J = 6.6, 3.2 Hz, 1H), 3.94 (dt, J =
12.3, 6.1 Hz, 1H), 2.20 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 1.24 (d, J = 6.2 Hz, 3H), 1.19 (d, J = 6.1
Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 170.45, 170.10, 169.54, 101.05, 71.05, 66.70, 65.55,
65.38, 62.11, 23.02, 22.50, 21.69, 21.00, 20.89, 20.66. HRMS calcd for C15H23O8INa [M+Na+]:
481.0330, found: 481.0338.

i-Propyl 3,6-di-O-acetyl-2-deoxy-2-iodo-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-mannopyranoside (2m): 542 mg, yield: 73%, white solid. 1H NMR (400 MHz, CDCl3) δ 5.55 (d, J = 3.9
Hz, 1H), 5.41 (t, J = 10.0 Hz, 1H), 5.22 (s, 1H), 5.08 (t, J = 9.8 Hz, 1H), 4.91 (dd, J = 10.4, 3.9 Hz,
1H), 4.55 (dd, J = 7.7, 4.2 Hz, 1H), 4.51 – 4.47 (m, 1H), 4.43 (d, J = 12.1 Hz, 1H), 4.27 (ddd, J =
21.5, 12.3, 3.8 Hz, 2H), 4.17 – 4.00 (m, 4H), 3.92 (td, J = 12.4, 6.2 Hz, 1H), 2.15 (s, 3H), 2.11 (s,
6H), 2.04 (s, 6H), 2.02 (s, 3H), 1.28 (d, J = 6.2 Hz, 3H), 1.19 (d, J = 6.1 Hz, 3H). 13C NMR (101
MHz, CDCl3) δ 170.41, 170.34, 170.05, 169.89, 169.65, 169.28, 99.36, 95.73, 72.46, 72.35, 71.26,
70.02, 69.46, 68.95, 68.34, 67.91, 62.98, 61.35, 30.34, 23.03, 21.62, 21.13, 20.70, 20.56, 20.51,
3. 1H NMR and 13C NMR spectra for 2a-m

Cyclohexyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranoside (2a)
Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\(\alpha\)-mannopyranoside (2b)
Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranoside (2c)
Propyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-D-mannopyranoside (2d)
\[\textit{i-Propyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-\textalpha-D-mannopyranoside (2e)} \]
Butyl 3,4,6-tri-O-acetyl-2-deoxy-2-ido-α-D-mannopyranoside (2f)
i-Butyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranoside (2g)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
t-Butyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-mannopyranoside (2h)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
Mentyl 3,4,6-tri-\(O\)-acetyl-2-deoxy-2-iodo-\(\alpha\)-\(D\)-mannopyranoside (2i)
i-Propyl 3,4-di-O-acetyl-2-deoxy-2-ido-d-lyxopyranoside (2j)

$\text{H NMR (400 MHz, CDCl}_3$)

$\text{C NMR (101 MHz, CDCl}_3$)
i-Propyl 3,4-di-O-acetyl-2-deoxy-2-iodo-α-D-arabinopyranoside (2k)

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
i-Propyl 3,4,6-tri-O-acetyl-2-deoxy-2-iodo-α-D-talopyranoside (2l)
i-Propyl
3,6-di-O-acetyl-2-deoxy-2-iodo-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-mannopyranoside (2m)
4. Reference
