Supporting Information
for DOI: 10.1055/s-0035-1561631
© Georg Thieme Verlag KG Stuttgart · New York 2016
An NHC-catalyzed Cross-benzoin/esterification Sequential Reaction for Synthesis of Trifluoromethyl-substituted α,β-Unsaturated Esters

Qian Zhao,1,† Li-Ying Feng,2,† Wei Huang,1 Xiang-Hong He,1 Cheng Peng,*1 and Bo Han*1,2

1 State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, P. R. China. E-mail: pengchengchengdu@126.com

2 Department of Ultrasongraphy, Beijing Militray General Hospital of PLA, No.5 Nanmencang, Beijing 100007, P. R. China. E-mail: hanbo@cdutcm.edu.cn

† These authors contributed equally to this work.

Supporting Information

Table of Contents
1. General methods
2. General procedure for the synthesis of CF3-substituted α,β-unsaturated esters 5
3. Synthetic transformations to access multi-functionalized oxazole 7
4. NMR spectra
1. General methods

NMR data was obtained for 1H at 400 MHz, and for 13C at 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane using solvent resonance in CDCl$_3$ solution as the internal standard. ESI HRMS was performed on a Waters SYNAPT G2. Column chromatography was performed on silica gel (200-300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light and I$_2$. Melting points were determined on a Mel-Temp apparatus and were not corrected. All chemicals were used from Adamas-beta without purification unless otherwise noted.

2. General procedure for the synthesis of CF$_3$-substituted α,β-unsaturated esters 5

![Reaction Scheme]

The reaction was carried out with aromatic aldehyde 1 (0.5 mmol), CF$_3$CH(OH)OEt 2 (1.0 mmol), precatalyst A (0.05 mmol, 13.7 mg) and DBU (0.1 mmol, 15 µL) in THF (2.0 mL) at 60 °C under argon to afford the acyloin 3, after which α-bromo-enal 4 (0.3 mmol) was added in one-pot. The reaction mixture was stirred at 60 °C for a specified reaction time until the reaction completed (monitored by TLC). Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give the final product 5.

5a: Obtained as a white solid; yield: 65% (65.3 mg) for two steps after flash chromatography. m.p. 58-60 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.03-8.01 (m, 2H), 7.82 (d, $J = 16.0$ Hz, 2H), 7.57-7.51 (m, 4H), 7.44-7.38 (m, 3H), 6.57 (d, $J = 16.0$ Hz, 1H), 6.45 (q, $J = 6.8$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.6, 164.8, 148.2, 134.6, 133.7, 131.2, 129.0, 128.9, 128.5, 121.9 (d, $J_{CF} = 280$ Hz), 115.2, 70.9 (q, $J_{CF} = 31$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{15}$F$_3$O$_3$+Na 357.0714, found 357.0717.
5b: Obtained as a white solid; yield: 74% (82.3 mg) for two steps after flash chromatography. m.p. 46-48 °C; 1H NMR (400 MHz, CDCl$_3$): $\delta = 8.00$ (m, 1H), 7.90-7.88 (m, 1H), 7.82 (d, $J = 16.0$ Hz, 1H), 7.63 (ddd, $J_1 = 2.8$ Hz, $J_2 = 2.0$ Hz, $J_3 = 0.8$ Hz, 1H), 7.57-7.55 (m, 2H), 7.50-7.39 (m, 4H), 6.56 (d, $J = 16.0$ Hz, 1H), 6.34 (q, $J = 6.8$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 187.7, 164.8, 148.5, 136.0, 135.4, 134.5, 133.7, 131.3, 130.3, 129.1, 129.0, 128.6, 127.0, 121.7$ (d, $J_{CF} = 280$ Hz), 115.0, 71.1 (q, $J_{CF} = 32$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{12}$ClF$_3$O$_3$+Na 391.0325, found 391.0322.

5c: Obtained as a white solid; yield: 80% (88.1 mg) for two steps after flash chromatography. m.p. 73-74 °C; 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.98-7.95$ (m, 2H), 7.82 (d, $J = 16.0$ Hz, 1H), 7.57-7.55 (m, 2H), 7.52-7.50 (m, 2H), 7.44-7.41 (m, 3H), 6.55 (d, $J = 16.0$ Hz, 1H), 6.36 (q, $J = 6.8$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 187.6, 164.8, 148.4, 141.3, 133.7, 132.8, 131.2, 130.3, 129.4, 129.1, 128.5, 121.8$ (d, $J_{CF} = 280$ Hz), 115.0, 71.0 (q, $J_{CF} = 32$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{12}$ClF$_3$O$_3$+Na 391.0325, found 391.0320.

5d: Obtained as a white solid; yield: 73% (91.1 mg) for two steps after flash chromatography. m.p. 44-45 °C; 1H NMR (400 MHz, CDCl$_3$): $\delta = 8.15$ (t, $J = 1.6$ Hz, 1H), 7.95-7.93 (m, 1H), 7.82 (d, $J = 16.0$ Hz, 1H), 7.80-7.77 (m, 1H), 7.58-7.55 (m, 2H), 7.43-7.39 (m, 4H), 6.56 (d, $J = 1.6$ Hz, 1H), 6.33 (q, $J = 6.8$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 187.6, 164.8, 148.5, 137.4, 136.2, 133.7, 131.9, 131.3, 130.5, 129.1, 128.6, 127.4, 123.3, 121.7$ (d, $J_{CF} = 280$ Hz), 114.9, 71.1 (q, $J_{CF} = 32$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{12}$BrF$_3$O$_3$+Na 434.9820, found 434.9823.

5e: Obtained as a white solid; yield: 82% (102.1 mg) for two steps after flash chromatography. m.p. 80-81 °C; 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.90-7.86$ (m, 2H), 7.82 (d, $J = 16.4$ Hz, 1H), 7.69-7.66 (m, 2H), 7.57-7.55 (m, 2H), 7.44-7.39 (m, 3H), 6.55 (d, $J = 16.0$ Hz, 1H), 6.35 (q, $J = 6.8$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): $\delta = 187.8, 164.8, 148.5, 133.7, 133.3, 132.4, 131.3,$
130.4, 130.1, 129.1, 128.6, 121.7 (d, $J_{CF} = 280$ Hz), 115.0, 71.0 (q, $J_{CF} = 32$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{12}$BrF$_3$O$_3$Na 434.9820, found 434.9817.

5f: Obtained as a white solid; yield: 70% (73.6 mg) for two steps after flash chromatography. m.p. 49-51 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 7.94-7.90 (m, 1H), 7.82 (d, $J = 16.0$ Hz, 1H), 7.64-7.55 (m, 3H), 7.43-7.41 (m, 3H), 7.32-7.28 (m, 1H), 7.24-7.19 (m, 1H), 6.58 (d, $J = 16.0$ Hz, 1H), 6.38 (qd, $J = 1.6$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 186.5, 164.8, 161.8 (d, $J_{CF} = 254$ Hz), 148.0, 136.3 (d, $J_{CF} = 10$ Hz), 133.8, 131.3 (d, $J_{CF} = 2$ Hz), 131.1, 129.0, 128.5, 125.0 (d, $J_{CF} = 3$ Hz), 121.8 (d, $J_{CF} = 280$ Hz), 116.9 (d, $J_{CF} = 24$ Hz), 115.4, 74.2 (q, $J_{CF} = 31$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{12}$F$_4$O$_3$Na 375.0620, found 375.0617.

5g: Obtained as a white solid; yield: 76% (79.8 mg) for two steps after flash chromatography. m.p. 84-86 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.09-8.04 (m, 2H), 7.82 (d, $J = 16.0$ Hz, 1H), 7.58-7.55 (m, 2H), 7.44-7.39 (m, 3H), 7.23-7.18 (m, 2H), 6.56 (d, $J = 16.4$ Hz, 1H), 6.38 (q, $J = 6.8$ Hz, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 187.0, 166.6 (d, $J_{CF} = 256$ Hz), 164.8, 148.4, 133.7, 131.8 (d, $J_{CF} = 9$ Hz), 131.2, 131.0, 129.1, 128.5, 121.8 (d, $J_{CF} = 280$ Hz), 116.3 (d, $J_{CF} = 22$ Hz), 115.0, 70.9 (q, $J_{CF} = 32$ Hz) ppm; ESI HRMS: calcd. For C$_{18}$H$_{12}$F$_4$O$_3$Na 375.0620, found 375.0616.

5h: Obtained as a white solid; yield: 58% (65.5 mg) for two steps after flash chromatography. m.p. 48-50 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 7.97-7.95 (m, 2H), 7.82 (d, $J = 16.0$ Hz, 1H), 7.57-7.55 (m, 2H), 7.43-7.36 (m, 5H), 6.57 (d, $J = 16.0$ Hz, 1H), 6.44 (q, $J = 6.8$ Hz, 1H), 3.02-2.95 (m, 1H), 1.29 (s, 3H), 1.27 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 187.9, 164.8, 156.5, 148.1, 133.8, 132.4, 131.1, 129.3, 129.0, 128.5, 127.1, 121.9 (d, $J_{CF} = 280$ Hz), 115.3, 70.7 (q, $J_{CF} = 32$ Hz), 34.4, 23.54, 23.53 ppm; ESI HRMS: calcd. For C$_{21}$H$_{19}$F$_3$O$_3$Na 399.1184, found 399.1187.
5i: Obtained as a white solid; yield: 50% (48.7 mg) for two steps after flash chromatography. m.p. 64-65 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.83\) (d, \(J = 16.0\) Hz, 1H), 7.72 (d, \(J = 1.2\) Hz, 1H), 7.58-7.55 (m, 2H), 7.46-7.40 (m, 4H), 6.64 (dd, \(J_1 = 3.6\) Hz, \(J_2 = 1.6\) Hz, 1H), 6.57 (d, \(J = 16.0\) Hz, 1H), 6.26 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 176.2, 164.7, 150.6, 148.3, 148.2, 133.7, 131.2, 129.1, 128.5, 121.8\) (d, \(J_{CF} = 280\) Hz), 120.6, 115.2, 113.1, 71.2 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{16}\)H\(_{11}\)F\(_3\)O\(_4\)+Na 347.0507, found 347.0501.

5j: Obtained as a white solid; yield: 53% (53.7 mg) for two steps after flash chromatography. m.p. 39-41 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.95\) (d, \(J = 4.0\) Hz, 1H), 7.84 (d, \(J = 16.0\) Hz, 1H), 7.80 (dd, \(J_1 = 5.2\) Hz, \(J_2 = 1.2\) Hz, 1H), 7.60-7.56 (m, 2H), 7.44-7.40 (m, 3H), 7.21 (dd, \(J_1 = 4.8\) Hz, \(J_2 = 4.0\) Hz, 1H), 6.58 (d, \(J = 16.0\) Hz, 1H), 6.20 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 180.7, 164.8, 148.4, 140.7, 136.5, 134.5, 133.7, 131.2, 129.1, 128.7, 128.5, 121.7\) (d, \(J_{CF} = 280\) Hz), 115.1, 72.2 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{16}\)H\(_{11}\)F\(_3\)S+Na 363.0279, found 363.0282.

5k: Obtained as a white solid; yield: 55% (59.3 mg) for two steps after flash chromatography. m.p. 56-57 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.86\) (d, \(J = 16.0\) Hz, 1H), 7.85 (d, \(J = 16.0\) Hz, 1H), 7.62-7.57 (m, 4H), 7.45-7.39 (m, 6H), 7.00 (d, \(J = 16.0\) Hz, 1H), 6.60 (d, \(J = 16.0\) Hz, 1H), 5.82 (q, \(J = 7.2\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 187.0, 164.7, 148.2, 146.9, 133.8, 131.6, 131.2, 129.1, 129.06, 129.00, 128.5, 121.9\) (d, \(J_{CF} = 279\) Hz), 120.2, 120.1, 115.3, 74.0 (q, \(J_{CF} = 31\) Hz) ppm; ESI HRMS: calcd. For C\(_{20}\)H\(_{15}\)F\(_3\)O\(_3\)+Na 383.0871, found 383.0867.

5l: Obtained as a white solid; yield: 67% (73.6 mg) for two steps after flash chromatography. m.p. 99-101 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.25\) (d, \(J = 16.0\) Hz, 1H), 8.04-8.01 (m, 2H), 7.68-7.64 (m, 2H), 7.55-7.52 (m, 2H), 7.45-7.42 (m, 1H), 7.37-7.28 (m, 2H), 6.58 (d, \(J = 16.0\) Hz, 1H), 6.45 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 188.5, 164.4, 143.9, 135.4, 134.6, 134.5, 132.0, 131.9, 130.4, 129.0, 127.9, 127.2, 121.8\) (d, \(J_{CF} = 280\) Hz), 117.7, 71.0 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{18}\)H\(_{12}\)ClF\(_3\)O\(_3\)+Na 391.0325, found 391.0320.
5m: Obtained as a white solid; yield: 70% (77.5 mg) for two steps after flash chromatography. m.p. 60-62 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.02-8.00\) (m, 2H), 7.74 (d, \(J = 16.0\) Hz, 1H), 7.68-7.65 (m, 1H), 7.55-7.51 (m, 3H), 7.44-7.33 (m, 3H), 6.57 (d, \(J = 16.0\) Hz, 1H), 6.44 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 188.4, 164.4, 146.4, 135.5, 135.1, 134.6, 134.5, 131.0, 130.3, 129.0, 128.9, 128.2, 126.6, 121.8\) (d, \(J_{CF} = 280\) Hz), 116.8, 71.0 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{18}\)H\(_{12}\)ClF\(_3\)O\(_3\)+Na 391.0325, found 391.0328.

5n: Obtained as a white solid; yield: 73% (80.4 mg) for two steps after flash chromatography. m.p. 90-92 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.02-8.00\) (m, 2H), 7.76 (d, \(J = 16.0\) Hz, 1H), 7.68-7.64 (m, 1H), 7.55-7.47 (m, 4H), 7.40-7.37 (m, 2H), 6.54 (d, \(J = 16.0\) Hz, 1H), 6.45 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 188.4, 164.6, 146.6, 137.2, 134.6, 134.5, 132.2, 129.7, 129.4, 129.0, 121.8\) (d, \(J_{CF} = 280\) Hz), 115.8, 70.9 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{18}\)H\(_{12}\)ClF\(_3\)O\(_3\)+Na 391.0325, found 391.0329.

5o: Obtained as a white solid; yield: 66% (69.5 mg) for two steps after flash chromatography. m.p. 45-46 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.03-8.01\) (m, 2H), 7.94 (d, \(J = 16.0\) Hz, 1H), 7.68-7.64 (m, 1H), 7.58-7.51 (m, 3H), 7.43-7.38 (m, 1H), 7.21-7.10 (m, 2H), 6.68 (d, \(J = 16.4\) Hz, 1H), 6.45 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 188.5, 164.7, 161.6\) (d, \(J_{CF} = 254\) Hz), 140.8 (d, \(J_{CF} = 2\) Hz), 134.6, 132.6 (d, \(J_{CF} = 8\) Hz), 129.5 (d, \(J_{CF} = 2\) Hz), 129.0, 124.6 (d, \(J_{CF} = 4\) Hz), 121.9 (d, \(J_{CF} = 12\) Hz), 121.8 (d, \(J_{CF} = 280\) Hz), 117.8 (d, \(J_{CF} = 7\) Hz), 116.4 (d, \(J_{CF} = 22\) Hz), 71.0 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{18}\)H\(_{12}\)F\(_4\)O\(_3\)+Na 375.0620, found 375.0617.

5p: Obtained as a white solid; yield: 71% (74.6 mg) for two steps after flash chromatography. m.p. 41-42 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.03-8.01\) (m, 2H), 7.77 (d, \(J = 16.0\) Hz, 1H), 7.68-7.64 (m,1H), 7.55-7.51 (m, 2H), 7.41-7.32 (m, 2H), 7.27-7.24 (m, 1H), 7.15-7.10 (m, 1H), 6.56 (d, \(J = 16.0\) Hz, 1H), 6.45 (q, \(J = 6.8\) Hz, 1H) ppm; \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 188.4, 164.5, 163.0\) (d, \(J_{CF} = 246\) Hz), 146.7 (d, \(J_{CF} = 2\) Hz), 135.9 (d, \(J_{CF} = 8\) Hz), 134.6, 134.5, 130.6 (d, \(J_{CF} = 1465\) Hz, 1H), 116.4 (d, \(J_{CF} = 22\) Hz), 71.0 (q, \(J_{CF} = 32\) Hz) ppm; ESI HRMS: calcd. For C\(_{18}\)H\(_{12}\)F\(_4\)O\(_3\)+Na 375.0620, found 375.0617.
$J_{CF} = 9 \text{ Hz}$), 129.0, 128.9, 124.5 (d, $J_{CF} = 2 \text{ Hz}$), 121.8 (d, $J_{CF} = 280 \text{ Hz}$), 118.0 (d, $J_{CF} = 21 \text{ Hz}$), 116.7, 114.7 (d, $J_{CF} = 22 \text{ Hz}$), 71.0 (q, $J_{CF} = 31 \text{ Hz}$) ppm; ESI HRMS: calcd. For $C_{18}H_{12}F_{4}O_{3}$+Na 375.0620, found 375.0624.

5q: Obtained as a white solid; yield: 72% (88.7 mg) for two steps after flash chromatography. m.p. 46-48 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.02-8.00 (m, 2H), 7.75-7.65 (m, 3H), 7.55-7.46 (m, 4H), 7.31-7.27 (m, 1H), 6.56 (d, $J = 16.0 \text{ Hz}$, 1H), 6.44 (q, $J = 6.4 \text{ Hz}$, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.4, 164.4, 146.4, 135.8, 134.7, 134.5, 133.9, 131.2, 130.5, 129.0, 128.9, 127.1, 123.2, 121.8 (d, $J_{CF} = 283 \text{ Hz}$), 116.8, 71.0 (q, $J_{CF} = 32 \text{ Hz}$) ppm; ESI HRMS: calcd. For $C_{18}H_{12}BrF_{3}O_{3}$+Na 434.9820, found 434.9816.

5r: Obtained as a white solid; yield: 75% (92.5 mg) for two steps after flash chromatography. m.p. 114-116 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.02-8.00 (m, 2H), 7.75 (d, $J = 16.0 \text{ Hz}$, 1H), 7.69-7.64 (m, 1H), 7.56-7.51 (m, 4H), 7.43-7.41 (m, 2H), 6.55 (d, $J = 16.0 \text{ Hz}$, 1H), 6.44 (q, $J = 6.8 \text{ Hz}$, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.4, 164.6, 146.7, 134.6, 134.5, 132.6, 132.3, 129.8, 129.0, 125.6, 121.8 (d, $J_{CF} = 280 \text{ Hz}$), 115.9, 70.9 (q, $J_{CF} = 32 \text{ Hz}$) ppm; ESI HRMS: calcd. For $C_{18}H_{12}BrF_{3}O_{3}$+Na 434.9820, found 434.9816.

5s: Obtained as a white solid; yield: 63% (71.5 mg) for two steps after flash chromatography. m.p. 82-83 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.29-8.26 (m, 2H), 8.03-8.01 (m, 2H), 7.85 (d, $J = 16.0 \text{ Hz}$, 1H), 7.74-7.66 (m, 3H), 7.57-7.53 (m, 2H), 6.70 (d, $J = 16.0 \text{ Hz}$, 1H), 6.47 (q, $J = 6.8 \text{ Hz}$, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.1, 163.9, 149.0, 144.9, 139.7, 134.8, 134.5, 129.1, 129.0, 128.9, 124.3, 121.7 (d, $J_{CF} = 280 \text{ Hz}$), 119.6, 71.1 (q, $J_{CF} = 32 \text{ Hz}$) ppm; ESI HRMS: calcd. For $C_{18}H_{12}F_{5}NO_{3}$+Na 402.0565, found 402.0571.

5t: Obtained as a white solid; yield: 60% (62.6 mg) for two steps after flash chromatography. m.p. 44-46 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.03-8.01 (m, 2H), 7.79 (d, $J = 16.0 \text{ Hz}$, 1H),
7.67-7.63 (m, 1H), 7.54-7.50 (m, 2H), 7.46-7.44 (m, 2H), 7.22-7.20 (m, 2H), 6.51 (d, J = 16.0 Hz, 1H), 6.47 (q, J = 6.8 Hz, 1H), 2.38 (s, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.7, 165.0, 148.2, 141.8, 134.5, 131.1, 129.8, 129.6, 129.0, 128.9, 128.5, 121.9 (d, $J_{CF} = 280$ Hz), 114.0, 70.8 ppm; ESI HRMS: calcd. For C$_{19}$H$_{15}$F$_3$O$_3$+Na 371.0871, found 371.0867.

5u: Obtained as a white solid; yield: 54% (58.6 mg) for two steps after flash chromatography. m.p. 62-63 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.03-8.01 (m, 2H), 7.77 (d, J = 16.0 Hz, 1H), 7.67-7.63 (m, 1H), 7.54-7.50 (m, 4H), 6.94-6.90 (m, 2H), 6.47-6.40 (m, 2H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.8, 165.1, 162.1, 147.9, 134.6, 134.5, 130.3, 129.0, 128.9, 126.5, 121.9 (d, $J_{CF} = 280$ Hz), 114.5, 112.5, 70.7 ppm; ESI HRMS: calcd. For C$_{19}$H$_{15}$F$_3$O$_3$+Na 387.0820, found 387.0825.

5v: Obtained as a white solid; yield: 38% (37.4 mg) for two steps after flash chromatography. m.p. 76-77 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.01 (d, J = 7.6 Hz, 2H), 7.67-7.63 (m, 1H), 7.56-7.50 (m, 4H), 6.71 (d, J = 3.6 Hz, 1H), 6.50 (dd, J$_1$ = 3.6 Hz, J$_2$ = 2.0 Hz, 1H), 6.44-6.39 (m, 2H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.6, 164.8, 150.4, 145.7, 134.6, 134.5, 133.8, 129.0, 128.9, 121.9 (d, $J_{CF} = 280$ Hz), 116.6, 112.7, 112.6, 70.9 ppm; ESI HRMS: calcd. For C$_{16}$H$_{11}$F$_3$O$_4$+Na 347.0507, found 347.0504.

5w: Obtained as a white solid; yield: 51% (41.5 mg) for two steps after flash chromatography. m.p. 59-61 °C; 1H NMR (400 MHz, CDCl$_3$): δ = 8.00-7.97 (m, 2H), 7.67-7.63 (m, 1H), 7.53-7.49 (m, 2H), 7.21-7.12 (m, 1H), 6.36 (q, J = 6.8 Hz, 1H), 5.99 (dq, J$_1$ = 15.6 Hz, J$_2$ = 1.6 Hz, 1H), 1.94 (dd, J$_1$ = 7.2 Hz, J$_2$ = 1.6 Hz, 3H) ppm; 13C NMR (100 MHz, CDCl$_3$): δ = 188.6, 164.1, 149.0, 134.6, 134.5, 128.94, 128.92, 121.8 (d, $J_{CF} = 280$ Hz), 120.3, 70.7 ppm; ESI HRMS: calcd. For C$_{13}$H$_{11}$F$_3$O$_3$+Na 295.0558, found 295.0562.
3. Synthetic transformations to access multi-functionalized oxazole 7

To a solution of 5a (50.0 mg, 0.15 mmol) in DMF (2.0 mL) was added thiourea (22.8 mg, 0.30 mmol). The mixture was stirring at 150 ºC (oil bath) under a nitrogen atmosphere for 16h. The reaction was then extracted with ethyl acetate, and the organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1). The oxazole 7 was obtained as a yellow solid in 72% yield (34.1 mg) after flash chromatography. m.p. 182-184 ºC; ¹H NMR (400 MHz, CDCl₃): δ = 7.53-7.52 (m, 2H), 7.48-7.43 (m, 5H), 7.39-7.31 (m, 4H), 6.95 (d, J = 16.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 145.6, 135.6, 133.4, 129.3, 128.94, 128.91, 128.8, 128.4, 128.3, 126.9, 126.1, 122.1 (d, J_CF = 266 Hz), 115.2 ppm; ESI HRMS: calcd. For C₁₈H₁₂F₃NO₃+Na 338.0769, found 338.0763.
4. NMR spectra