Manuscript Title:

Transition-metal Free Method for Synthesis of Benzo[b]thiophene from o-Halo-vinylbenzenes and K$_2$S via Direct S$_{2}$Ar-type Reaction, Cyclization, and Dehydrogenation Process

Authors:
Xiaoyun Zhang, Weilan Zeng, Yuan Yang, Hui Huang, Yun Liang*

Affiliations:
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.
BeiJing National Laboratory for Molecular Sciences, BeiJing 100871, China

Contents

1) General Information S2
2) Synthesis of Starting Materials S2
3) Typical Procedures S3-S4
4) Procedures and Characterization Data S4-S9
5) Scanned 1H NMR and 13C NMR Spectra of All New Compounds S10-S28
1) General Information

The 1H and 13C NMR spectra were recorded on a spectrometer operating at 500 MHz and 125 MHz, respectively. The 1H NMR spectra were taken in CDCl$_3$ and the chemical shifts are given in ppm with respect to tetramethylsilane (TMS) used as an internal standard. The 13C NMR spectra were taken in CDCl$_3$ and the central peak of the solvent was adjusted to 77.00 ppm and used as a reference. All reagents were used directly as obtained commercially unless otherwise noted.

2) Synthesis of Starting Materials

Preparation of Starting Materials 1

\[
\begin{align*}
\text{R}^1 & \text{C} & \text{F} & \text{Br} & \text{PPh}_3 & \text{toluene} & \text{R}^1 & \text{C} & \text{F} & \text{Br} & \text{PPh}_3 & \text{KO}^\text{Bu}, \text{THF} & \text{R}^2 & \text{CHO} & \text{R}^2 & \text{C} & \text{R}^2 & \text{F} \\
\end{align*}
\]

Step 1 Preparation of (2-fluorobenzyl)triphenylphosphonium bromide derivatives:

A solution of 2-fluorobenzyl bromide (1.25 g, 5 mmol) and PPh$_3$ (1.965 g, 7.5 mmol) in toluene (150 mL) was heated at 120 °C for 6 h, then cooled to room temperature. The resulting precipitate was collected by filtration, washed with toluene (50 mL) and dried in vacuo to give the product (2.381g, 4.65 mmol, 93%) as a white solid.

Step 2 Preparation of 1-fluoro-2-styrylbenzene derivatives:

(2-Fluorobenzyl)triphenylphosphonium bromide (2.4 mmol, 1.2 equiv) was dissolved in THF (10 mL) and potassium tert-butoxide (2.8 mmol, 1.4 equiv) was added at 0 °C to give a cloudy orange suspension. After 30 minutes, aldehyde (2 mmol) in THF (5 mL) was added via cannula, and the suspension turned a yellow colour. The reaction was left to gradually warm to room temperature, until complete consumption of starting material was indicated by TLC (about 5-12 h). The mixture was quenched with water and the organic layer extracted with ethyl acetate (3 x 50 mL). The combined extracts were washed with brine (1 x 100 mL), dried (MgSO$_4$), concentrated in vacuo and purified by column chromatography to product as a colourless liquid.
3) Typical Procedures

General Procedure for Preparation of Benzo[b]thiophenes:

An oven-dried Schlenk tube was charged with K$_2$S (0.9 mmol, 3 equiv) and 1-fluoro-2-styryl derivatives (0.3 mmol). The tube was evacuated and backfilled with nitrogen before DMF or CH$_3$CN (2 mL) were added. The reaction mixture was stirred at 140 °C, and after 24 hours was quenched with water. The mixture extracted with ethyl acetate, and the combined organic layers were washed with H$_2$O and brine, dried over Na$_2$SO$_4$, concentrated in vacuo and purified by column chromatography to afford a white solid.

One-Pot Synthesis of Benzothiophenes:

(2-Fluorobenzyl)triphenylphosphonium bromide (0.36 mmol, 1.2 equiv) was dissolved in THF (3 mL) and potassium tert-butoxide (0.42 mmol, 1.4 equiv) was added at 0 °C to give a cloudy orange suspension in a Schlenk tube. After 30 minutes, aldehyde (0.3 mmol) in THF (1 mL) was added via cannula, and the suspension turned a yellow colour. After 5h, K$_2$S (0.9 mmol, 3 equiv) and DMF (2 mL) was added to the mixture. The reaction mixture was stirred at 140 °C for 24 h. The mixture extracted with ethyl acetate, and the combined organic layers were washed with H$_2$O and brine, dried over Na$_2$SO$_4$, concentrated in vacuo and purified by column chromatography (SiO$_2$, hexanes) to afford a white solid (50.4 mg, 80%).

Preparation of Benzo[b]thiophenes via Added Extra D$_2$O:

An oven-dried Schlenk tube was charged with K$_2$S (0.9 mmol, 3 equiv), 1-fluoro-2-styryl derivatives (0.3 mmol) and D$_2$O (3 equiv). The tube was evacuated
and backfilled with nitrogen before DMF (2 mL) were added. The reaction mixture was stirred at 140 °C, and after 24 hours was quenched with water. The mixture extracted with ethyl acetate, and the combined organic layers were washed with H₂O and brine, dried over Na₂SO₄, concentrated in vacuo and purified by column chromatography to afford a white solid (compound C, 57 mg, 92%).

4) Procedures and Characterization Data:

![Chemical Structure](image1)

2-phenylbenzo[b]thiophene (2a): The product was purified by flash chromatography to give 60 mg (96%) as a yellow solid. \(^1\)H NMR (CDCl₃, 500 MHz) δ = 7.82 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.54 (s, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.36-7.29 (m, 3H). \(^13\)C NMR (CDCl₃, 125 MHz) δ = 144.2, 140.7, 139.5, 134.3, 128.9, 128.2, 126.5, 124.3, 123.5, 122.2, 119.4.

![Chemical Structure](image2)

2-(p-tolyl)benzo[b]thiophene (2b): The product was purified by flash chromatography to give 62 mg (92%) as a white solid. \(^1\)H NMR (CDCl₃, 500 MHz) δ = 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.34-7.27 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 2.38 (s, 3H). \(^13\)C NMR (CDCl₃, 125 MHz) δ = 144.4, 140.8, 139.3, 138.2, 131.5, 129.6, 126.4, 124.4, 124.1, 123.4, 122.2, 118.8, 21.2.

![Chemical Structure](image3)

2-(4-methoxyphenyl)benzo[b]thiophene (2c): The product was purified by flash chromatography to give 60 mg (84%) as a white solid. \(^1\)H NMR (CDCl₃, 500 MHz) δ = 7.80 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.65-7.63 (m, 2H), 7.42 (s, 1H), 7.35-7.31 (m, 1H), 7.29-7.26 (s, 1H), 6.70-6.94 (m, 2H), 3.85 (s, 3H). \(^13\)C NMR (CDCl₃, 125 MHz) δ = 159.8, 144.1, 140.9, 139.2, 127.7, 127.0, 124.4, 123.9, 123.2, 122.2, 118.2, 114.3, 55.4.
2-(3-methoxyphenyl)benzo[b]thiophene (2d): The product was purified by flash chromatography to give 63 mg (88%) as a white solid. \(^1H \text{NMR} (\text{CDCl}_3, 500 \text{ MHz}) \delta = 7.80 \text{ (d, } J = 8.5 \text{ Hz, 1H)}, 7.74 \text{ (d, } J = 7.0 \text{ Hz, 1H)}, 7.50 \text{ (s, 1H)}, 7.34-7.27 \text{ (m, 4H)}, 7.23 \text{ (s, 1H)}, 6.88-6.86 \text{ (m, 1H)}, 3.84 \text{ (s, 3H)}; \(^{13}C \text{NMR} (\text{CDCl}_3, 125 \text{ MHz}) \delta = 159.9, 144.0, 140.6, 139.4, 135.6, 129.9, 124.5, 124.3, 123.5, 122.2, 119.6, 119.0, 113.7, 112.1, 55.2.

3-(benzo[b]thiophen-2-yl)phenol (2e): The product was purified by flash chromatography to give 64 mg (95%) as a white solid. \(^1H \text{NMR} (\text{CDCl}_3, 500 \text{ MHz}) \delta = 7.82 \text{ (d, } J = 7.5 \text{ Hz, 1H}), 7.76 \text{ (d, } J = 7.5 \text{ Hz, 1H)}, 7.52 \text{ (s, 1H)}, 7.37-7.29 \text{ (m, 4H)}, 7.28 \text{ (s, 1H)}, 6.83-6.80 \text{ (m, 1H)}, 4.98 \text{ (s, 1H)}; \(^{13}C \text{NMR} (\text{CDCl}_3, 125 \text{ MHz}) \delta = 155.9, 143.7, 140.5, 139.5, 135.9, 130.2, 124.5, 124.4, 123.6, 122.3, 119.8, 119.2, 115.2, 113.3.

4-(benzo[b]thiophen-2-yl)-N,N-dimethylaniline (2f): The product was purified by flash chromatography to give 70 mg (93%) as a white solid. \(^1H \text{NMR} (\text{CDCl}_3, 500 \text{ MHz}) \delta = 7.77 \text{ (d, } J = 7.5 \text{ Hz, 1H}), 7.69 \text{ (d, } J = 8.0 \text{ Hz, 1H)}, 7.58 \text{ (d, } J = 9.0 \text{ Hz, 2H}), 7.35 \text{ (s, 1H)}, 7.30 \text{ (t, } J = 5.0 \text{ Hz, 1H)}, 7.23 \text{ (t, } J = 7.5 \text{ Hz, 1H)}, 6.74 \text{ (d, } J = 9.0 \text{ Hz, 2H}), 2.99 \text{ (s, 6H)}; \(^{13}C \text{NMR} (\text{CDCl}_3, 125 \text{ MHz}) \delta = 150.4, 145.1, 141.1, 138.8, 127.4(2C), 124.3, 123.4, 122.9, 122.1, 116.6, 112.4, 40.4.

2-(4-chlorophenyl)benzo[b]thiophene (2g): The product was purified by flash chromatography to give 56 mg (77%) as a white solid. \(^1H \text{NMR} (\text{CDCl}_3, 500 \text{ MHz}) \delta
= 7.82-7.81 (m, 1H), 7.76 (dd, $J = 1.5$, 7.0 Hz, 1H), 7.62 (dt, $J = 8.5$, 4.0 Hz, 2H), 7.50 (s, 1H), 7.40-7.35 (m, 2H), 7.34-7.30 (m, 2H). 13C NMR (CDCl$_3$, 125 MHz) $\delta =$ 142.8, 140.6, 139.5, 134.1, 132.8, 129.1, 127.6, 124.6, 124.5, 123.6, 122.3, 119.9.

2-(4-(trifluoromethyl)phenyl)benzo[b]thiophene(2h)5: The product was purified by flash chromatography to give 80 mg (96%) as a white solid. 1H NMR (CDCl$_3$, 500 MHz) $\delta =$ 7.85 (d, $J = 8.0$ Hz, 1H), 7.81 (d, $J = 8.0$ Hz, 3H), 7.67 (d, $J = 8.0$ Hz, 2H), 7.63 (s, 1H), 7.40-7.34 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) $\delta =$ 142.3, 140.4, 139.8, 137.7, 130.0 (q, $J = 32.5$ Hz), 126.6, 125.9 (q, $J = 3.8$ Hz), 125.9, 125.0, 124.4 (q, $J =$ 270.3 Hz), 123.0, 122.3, 121.0.

4-(benzo[b]thiophen-2-yl)benzonitrile(2i)5: The product was purified by flash chromatography to give 66 mg (94%) as a white solid. 1H NMR (CDCl$_3$, 500 MHz) $\delta =$ 7.85 (d, $J = 7.5$ Hz, 1H), 7.82-7.77 (m, 3H), 7.69 (d, $J = 8.5$ Hz, 2H), 7.65 (s, 1H), 7.40-7.35 (m, 2H); 13C NMR (CDCl$_3$, 125 MHz) $\delta =$ 141.6, 140.2, 139.9, 138.6, 132.7, 126.7, 125.3, 124.1, 124.1, 122.4, 121.7, 118.7, 111.3.

2-(naphthalen-2-yl)benzo[b]thiophene(2j)6: The product was purified by flash chromatography to give 73 mg (94%) as a white solid. 1H NMR (CDCl$_3$, 500 MHz) $\delta =$ 8.14 (s, 1H), 7.89-7.83 (m, 5H), 7.80 (d, $J = 8.0$ Hz, 1H), 7.67 (s, 1H), 7.52-7.47 (m, 2H), 7.38-7.31 (m, 2H). 13C NMR (CDCl$_3$, 125 MHz) $\delta =$ 144.3, 140.8, 139.6, 133.5, 133.1, 131.6, 128.6, 128.2, 127.7, 126.7, 126.4, 125.3, 124.6, 124.4, 124.3, 123.6, 122.3, 119.9.
2-(naphthalen-1-yl)benzo[b]thiophene(2k): The product was purified by flash chromatography to give 71 mg (91%) as a white solid. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 8.28\) (d, \(J = 9.0\) Hz, 1H), 7.90-7.86 (m, 3H), 7.82 (d, \(J = 7.5\) Hz, 1H), 7.64 (dd, \(J = 1.0, 7.0\) Hz, 1H), 7.51-7.48 (m, 3H), 7.43 (s, 1H), 7.41-7.33 (m, 2H). \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 142.1, 140.3, 140.2, 133.8, 132.4, 131.8, 128.9, 128.4, 128.3, 126.6, 126.1, 125.7, 125.2, 124.5, 124.2, 124.0, 123.6, 122.1.

\[
\begin{array}{c}
\text{S} \\
\text{T} \\
\hline
\text{T} \\
\end{array}
\]

2-(thiophen-3-yl)benzo[b]thiophene(2l): The product was purified by flash chromatography to give 58 mg (90%) as a yellow solid. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 7.77\) (d, \(J = 7\) Hz, 1H), 7.71 (d, \(J = 7\) Hz, 1H), 7.48 (s, 1H), 7.38-7.28 (m, 5H). \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 140.4, 139.0, 138.9, 135.7, 126.5, 126.1, 124.5, 124.2, 123.4, 122.2, 121.2, 119.3.

\[
\begin{array}{c}
\text{S} \\
\text{T} \\
\hline
\text{N} \\
\end{array}
\]

4-(benzo[b]thiophen-2-yl)pyridine(2m): The product was purified by flash chromatography to give 60 mg (94%) as a white solid. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 8.65\) (dd, \(J = 1.5, 4.5\) Hz, 2H), 7.87-7.81 (m, 2H), 7.74 (s, 1H), 7.58 (dd, \(J = 1.5, 4.5\) Hz, 2H), 7.41-7.36 (m, 2H). \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 150.3, 141.6, 140.8, 140.1, 139.9, 125.5, 124.9, 124.2, 122.4, 122.1, 120.5.

\[
\begin{array}{c}
\text{S} \\
\text{T} \\
\hline
\text{O} \\
\end{array}
\]

2-(benzo[b]thiophen-2-yl)furan(2n): The product was purified by flash chromatography to give 37 mg (62%) as a yellow solid. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 7.79\) (d, \(J = 8.0\) Hz, 1H), 7.74 (d, \(J = 7.5\) Hz, 1H), 7.47 (s, 2H), 7.35-7.28 (m, 2H), 6.63 (d, \(J = 3\) Hz, 1H), 6.48-6.47 (m, 1H). \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 149.3, 142.5, 140.2, 138.9, 133.3, 124.6, 124.4, 123.6, 122.2, 118.5, 111.9, 107.1.

\[
\begin{array}{c}
\text{S} \\
\text{T} \\
\hline
\text{C} \\
\end{array}
\]
2-butylbenzo[b]thiophene (2o): The product was purified by flash chromatography to give 23 mg (41%) as oil. 1H NMR (CDCl$_3$, 500 MHz) δ = 7.75 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.30-7.27 (m, 1H), 7.24-7.21 (m, 1H), 6.98 (s, 1H), 2.89 (t, J = 7.5 Hz, 2H), 1.76-1.70 (m, 2H), 1.44-1.40 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H). 13C NMR (CDCl$_3$, 125 MHz) δ = 146.8, 140.2, 139.2, 124.0, 123.3, 122.6, 122.1, 120.3, 33.2, 30.4, 22.2, 13.8.

2-(tert-buty)benzo[b]thiophene (2p): The product was purified by flash chromatography to give 17 mg (30%) as oil. 1H NMR (CDCl$_3$, 500 MHz) δ = 7.76 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 4.0 Hz, 1H), 7.28-7.22 (m, 1H), 7.03 (s, 1H), 1.45 (s, 9H); 13C NMR (CDCl$_3$, 125 MHz) δ = 158.2, 140.0, 138.8, 123.9, 123.4, 122.8, 122.1, 117.6, 34.9, 32.2 (3C).

2-benzylbenzo[b]thiophene (2q): The product was purified by flash chromatography to give 14 mg (20%) as a white solid. 1H NMR (CDCl$_3$, 500 MHz) δ = 7.32 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.34-7.22 (m, 7H), 7.00 (s, 1H), 4.22 (s, 2H); 13C NMR (CDCl$_3$, 125 MHz) δ = 145.1, 140.0, 139.8, 139.5, 128.8 (2C), 128.6 (2C), 126.7, 124.1, 123.6, 122.9, 122.1, 121.6, 37.0.

5-methoxy-2-phenylbenzo[b]thiophene (2r): The product was purified by flash chromatography to give 37 mg (52%) as a white solid. 1H NMR (CDCl$_3$, 500 MHz) δ = 7.70-7.66 (m, 3H), 7.46 (s, 1H), 7.41 (t, J = 7.5 Hz, 2H), 7.35-7.31 (m, 1H), 7.22 (s, 1H), 6.96 (dd, J = 2.5, 8.5 Hz, 1H), 3.86 (s, 3H). 13C NMR (CDCl$_3$, 125 MHz) δ = 157.6, 145.5, 141.7, 134.4, 131.9, 128.9, 128.2, 126.4, 122.9, 119.3, 114.5, 105.7, 55.5.
6-methoxy-2-phenylbenzo[b]thiophene (2s): The product was purified by flash chromatography to give 45 mg (63%) as a white solid. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 7.68-7.63\) (m, 3H), 7.45 (s, 1H), 7.40 (t, \(J = 7.8\) Hz, 2H), 7.32-7.29 (m, 2H), 6.97 (dd, \(J = 2.5, 9.0\) Hz, 1H), 3.87 (s, 3H). \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 157.5, 141.6, 141.0, 134.7, 134.5, 128.9, 127.8, 126.1, 124.2, 119.0, 114.5, 104.9, 55.6\).

5-chloro-2-phenylbenzo[b]thiophene (2t): The product was purified by flash chromatography to give 66 mg (90%) as a white solid. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 7.74-7.69\) (m, 4H), 7.46-7.42 (m, 3H), 7.36 (t, \(J = 7.5\) Hz, 1H), 7.28-7.25 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 146.4, 141.8, 137.6, 133.8, 130.7, 129.0\) (2C), 128.7, 126.5 (2C), 124.7, 123.3, 123.0, 118.6.

5-chloro-2-phenylbenzo[b]thiophene (2u): The product was purified by flash chromatography to give 46 mg (63%) as a white solid. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta = 7.79\) (s, 1H), 7.69-7.66 (m, 3H), 7.49 (s, 1H), 7.44-7.41 (m, 2H), 7.37-7.34 (m, 1H), 7.31 (d, \(J = 8.5\) Hz, 1H); 13C NMR (125 MHz, CDCl\(_3\)) \(\delta = 144.9, 140.5, 139.1, 133.8, 130.3, 129.0, 128.5, 126.4, 125.3, 124.3, 121.8, 118.9; compound C \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta = 7.82\) (d, \(J = 8.0\) Hz, 1H), 7.77 (d, \(J = 7.5\) Hz, 1H), 7.72 (d, \(J = 8.5\) Hz, 2H), 7.54 (s, 0.8H), 7.42 (t, \(J = 7.8\) Hz, 2H), 7.36-7.29 (m, 3H). \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta = 144.2, 140.6, 139.4, 134.2, 128.9, 128.2, 126.4, 124.5, 124.3, 123.5, 122.2, 119.4.

Reference:

5) Scanned 1H NMR and 13C NMR Spectra of All New Compounds
S31