Access to ynamides via CuO-mediated oxidative amidation of alkynes

Xiaogang Tong, Guanghui Ni, Xu Deng, Chengfeng Xia

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan 650201, China
Graduate University of Chinese Academy of Sciences, Beijing 100049, China

xiachengfeng@mail.kib.ac.cn

General considerations: All commercially available compounds were purchased from Aldrich, and all solvents were purified and dried according to standard methods prior to use. 1H and 13C NMR spectra were recorded on Bruker AV-400 MHz or DRX 500 MHz spectrometers and referenced to internal tetramethysilane. 1H NMR data are recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, br = broad singlet, coupling constant(s) in Hz, integration). 13C NMR data are reported in terms of chemical shift (δ, ppm). ESI-MS and HR-ESI-MS were determined with an API QSTAR Pulsar 1 spectrometer. EI-MS and ESI-MS were obtained on a Finnigan-4510 spectrometer and a Finnigan MAT 90 mass spectrometer, respectively. HR-ESIMS was recorded with an API QSTAR Pulsar 1 spectrometer. Optical rotations were obtained with a Horiba SEAP-300 polarimeter. Silica gel (200-300 mesh; Qingdao Marine Chemical Inc., Qingdao, China) was used for flash chromatography which was eluted with hexanes/ethyl acetate.

General procedures for the synthesis of ynamides: In a dry 25 mL round flask,
CuO (1.93 mmol), KCl (0.154 mmol), 4-PPY (0.154 mmol) and 2-oxazolidinones (3.85 mmol) were added to dry toluene (5 ML) under argon. The flask was placed in an oil-bath and added 4-ethynylanisole (0.77 mmol). Then, the reaction mixture was stirred for 36 hours at 80 °C. After the crude mixture was filtrated and concentrated under vacuum, the mixture was separated on a silica gel column using hexanes/ethyl acetate (2/1) as eluent to afford the ynamides.

Ynamide 3.\(^1\) colorless acicular crystal. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.38 (d, \(J = 8.8\) Hz, 2H), 6.83 (d, \(J = 8.8\) Hz, 2H), 4.49-4.56 (m, 2H), 4.00-3.97 (m, 2H), 3.80 (s, 3H).

Product 4.\(^2\) colorless acicular crystal. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.46 (d, \(J = 8.8\) Hz, 4H), 6.85 (d, \(J = 8.8\) Hz, 4H), 3.82 (s, 6H).

Ynamide 7.\(^1\) colorless acicular crystal. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.42 (d, \(J = 9.1\) Hz, 2H), 7.35-7.28 (m, 3H), 7.24-7.23 (m, 2H), 6.85 (d, \(J = 9.1\) Hz, 2H), 4.33 (m, 2H), 4.14 (m, 1H), 3.80 (s, 3H), 3.25 (dd, \(J = 14.0, 3.5\) Hz, 1H), 3.00 (m, 1H); [\(\alpha\)]\(^\text{b}\) +82.1 (c 3.01, CHCl\(_3\)).
Ynamide 8. colorless acicular crystal. 1H NMR (500 MHz, CDCl$_3$) δ 7.39 (d, $J = 8.8$ Hz, 2H), 6.83 (d, $J = 8.8$ Hz, 2H), 4.42 (t, $J = 8.8$ Hz, 1H), 4.19 (d, $J = 8.8$, 6.0 Hz, 1H), 4.03 (m, 1H), 3.81 (s, 3H), 2.29 (m, 1H), 1.03 (d, $J = 6.6$ Hz, 3H), 1.02 (d, $J = 6.6$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 159.6, 156.1, 133.4, 114.3, 113.9, 77.0, 71.9, 64.8, 62.1, 55.3, 29.2, 17.2, 15.2; HRMS: m/z (ESI) measured 260.1281 (calcd [M+H]$^+$ = 260.1286); $[\alpha]^\text{D} +28.2$ (c 2.57, CHCl$_3$).

Ynamide 9. colorless acicular crystal. 1H NMR (500 MHz, CDCl$_3$) δ 7.39-7.29 (m, 5H), 7.12 (d, $J = 8.7$ Hz, 2H), 6.66 (d, $J = 8.7$ Hz, 2H), 5.05-5.01 (m, 1H), 4.70-4.66 (m, 1H), 4.20 (dd, $J = 9.0$, 7.2 Hz, 1H), 3.67 (m, 3H); $[\alpha]^\text{D} +154.9$ (c 1.36, CHCl$_3$).

Ynamide 10. colorless acicular crystal. 1H NMR (400 MHz, CDCl$_3$) δ 7.33 (d, $J = 7.8$ Hz, 2H), 7.11 (d, $J = 7.8$ Hz, 2H), 4.47-4.43 (m, 2H), 3.99-3.53 (m, 2H), 2.34 (s, 3H).

Ynamide 11. colorless acicular crystal. 1H NMR (400 MHz, CDCl$_3$) δ 7.45-7.43 (m, 2H), 7.31-7.30 (m, 3H), 4.50-4.47 (m, 2H), 4.02-3.99 (m, 2H).
Ynamide 12. colorless acicular crystal. 1H NMR (400 MHz, DMSO-d$_6$) δ 8.03 (s, 1H), 7.92-7.89 (m, 3H), 7.51-7.56 (m, 2H), 7.48-7.45 (m, 1H), 3.50-4.46 (m, 2H), 4.06-4.02 (m, 2H); 13C NMR (100 MHz, DMSO-d$_6$) δ 155.9, 132.7, 132.2, 130.5, 128.3, 127.9, 127.7, 126.7, 126.9, 119.3, 81.1, 70.5, 63.8, 46.7; HRMS: m/z (ESI) measured 238.0869 (calcd [M+H]$^+$ = 238.0868).

Ynamide 13. colorless powder. 1H NMR (500 MHz, CDCl$_3$) δ 4.43-4.40 (m, 2H), 3.93-3.90 (m, 2H), 0.18 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 155.8, 91.3, 73.7, 62.9, 46.8, 0.016; HRMS: m/z (ESI) measured 184.0795 (calcd [M+H]$^+$ = 184.0793).

Z-Enamide 14. yellow powder. 1H NMR (400 MHz, CDCl$_3$) δ 8.19 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 9.6 Hz, 1H), 5.97 (d, J = 9.6 Hz, 1H), 4.34-4.31 (m, 2H), 3.39-3.35 (m, 2H).

E-Enamide 14. yellow powder. 1H NMR (400 MHz, CDCl$_3$) δ 8.15 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 14.5 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 5.74 (d, J = 14.5 Hz, 1H), 4.58-4.54 (m, 2H), 3.92-3.88 (m, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 155.1, 146.1, 142.9, 127.8, 125.7, 124.3, 108.7, 62.4, 42.4; HRMS: m/z (ESI) measured 235.0713 (calcd [M+H]$^+$ = 235.0718).
(Z)-Enamide 15. yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 (m, 1H), 7.61 (td, $J = 7.8, 2.0$ Hz, 1H), 7.21 (d, $J = 7.8$ Hz, 1H), 7.10 (ddd, $J = 7.8, 5.0, 1.0$ Hz, 1H), 6.77 (d, $J = 10.4$ Hz, 1H), 5.86 (d, $J = 10.4$ Hz, 1H), 4.36-4.32 (m, 2H), 3.87-3.83 (m, 2H): 13C NMR (100 MHz, CDCl$_3$) δ 157.1, 154.3, 148.7, 136.0, 126.1, 124.5, 121.1, 110.1, 62.7, 45.5; HRMS: m/z (ESI) measured 191.0823 (calcd [M+H]$^+$ = 191.0820).

(E)-Enamide 15. yellow oil. 1H NMR (500 MHz, CDCl$_3$) δ 8.49 (d, $J = 4.4$ Hz, 1H), 7.81 (d, $J = 14.3$ Hz, 1H), 7.60 (td, $J = 7.7, 2.2$ Hz, 1H), 7.29 (d, $J = 7.7$ Hz, 1H), 7.07 (m, 1H), 5.90 (d, $J = 14.3$ Hz, 1H), 4.54-4.51 (m, 2H), 3.90-3.87 (m, 2H): 13C NMR (100 MHz, CDCl$_3$) δ156.1, 155.9, 150.3, 137.4, 128.6, 122.1, 120.7, 112.0, 63.2, 43.4; HRMS: m/z (ESI) measured 191.0820 (calcd [M+H]$^+$ = 191.0820).

Reference: