Microwave Enhanced Reaction of Thio Acids with Azides In Aqueous Media

Pallavi Sharma, Adam D. Moorhouse, and John E. Moses*

School of Chemistry, University of Nottingham, UK, NG2 7RD
Fax: ++ 44 (0)115 951 3564; E-mail: john.moses@nottingham.ac.uk

General

1H and 13C-NMR spectra were recorded on a Bruker AV (III) 400, Bruker AV 400, Bruker DPX 400 (400 MHz (1H NMR), and 100 MHz (13C NMR)) spectrometers. Chemical shifts are expressed in parts per million (ppm) and the spectra calibrated to residual solvent signals of CDCl$_3$ (7.26 ppm (1H) and 77.0 ppm (13C)), MeOD-d_4 (3.31 ppm (1H) and 49.0 ppm (13C), DMSO-d_6 2.50 ppm (1H) and 39.4 ppm (13C). Coupling constants are given in hertz (Hz) and the following notations indicate the multiplicity of the signals: s (singlet), brs (broad singlet), brd (broad doublet) t (triplet), apt t (apparent triplet) and m (multiplet).

High Resolution Mass Spectra were recorded on a VG micron Autospec or Bruker microTOF. Fourier Transform Infrared Spectroscopy (FT-IR) spectra were obtained using a Perkin Elmer 1600 series or Bruker Tensor 27 spectrometer.

Melting points were recorded using a STUART SMP3 apparatus and are uncorrected. Thin layer chromatography were carried out on Merck pre-coated silica gel plates (60F-254) and visualised using ultra violet light, KMnO$_4$ solution or p-anisaldehyde solution.
General Procedure: To a stirred solution of aniline (0.840 mmol) in MeCN (1 mL) was added t-BuONO (0.840 mmol) at 0 °C in a 2-5 mL microwave reaction vial. To this solution was added TMSN₃ (0.840 mmol) dropwise at 0 °C. The solution was stirred for required amount of time, before completion of transformation to azide (monitored by TLC). At this point, the reaction was diluted with H₂O (1 mL) and 2,6-lutidine (1.09 mmol), thio acid (1.09 mmol) was added to the reaction mixture. The vial was capped then placed in a microwave and heated to 80 °C for required amount of time. After cooling, the solvent was evaporated under reduced pressure and product purified by column chromatography.

\[
\text{N-(4-Nitrophenyl)benzamide (7):} \quad \text{The product was purified by re-suspending the solid residue, obtained after removal of solvents, in water, filtration and washing with diethyl ether. White powder, Yield: >99%, mp: 199-201 °C (lit² 197-198 °C), } \\
\nu_{\text{max}}/\text{cm}^{-1}(\text{solid}): 1657, 1504; \quad ^1\text{H NMR (DMSO-d₆, 400 MHz): } \delta 10.81 (s, 1H), 8.27 (d, J = 9.3 Hz, 2H), 8.07 (d, J = 9.3 Hz, 2H), 7.98 (d, J = 7.4 Hz, 2H), 7.64 (apt t, J = 7.4 Hz, 1H), 7.57 (apt t, J = 7.4 Hz, 2H); \quad ^{13}\text{C NMR (DMSO-d₆, 100 MHz): } \delta 166.7, 145.9, 142.9, 134.6, 132.6, 128.9, 128.3, 124.7, 119.7; \quad \text{HRMS: calculated for } C_{13}H_{11}N_{2}O_{3} [M+H]^+ 243.0770 obtained 243.0761.
\]

\[
\text{N-(4-Nitrophenyl)acetamide (10):} \quad \text{The product was purified by re-suspending the solid residue, obtained after removal of solvents, in water, filtration and washing with }
\]
diethyl ether. White powder, **Yield**: 99%, **mp** 212-214 °C (lit\(^2\) 208-209 °C), \(v_{\text{max/cm}^{-1}}\) (solid): 1680, 1503; \(^1\)H NMR (DMSO-\(d_6\), 400 MHz): \(\delta\) 10.55 (s, 1H), 8.20 (d, \(J = 9.3\) Hz, 2H), 7.81 (d, \(J = 9.3\) Hz, 2H), 2.12 (s, 3H); \(^{13}\)C NMR (DMSO-\(d_6\), 100 MHz): \(\delta\) 169.2, 145.3, 141.9, 124.9, 118.4, 24.1; **HRMS**: calculated for C\(_8\)H\(_8\)N\(_2\)O\(_3\) \([M+H]^+\) 181.0613 obtained 181.0608.

![Structure of N-(4-Cyanophenyl)benzamide (11)](image)

N-(4-Cyanophenyl)benzamide (11):\(^3\) Yellow powder, **Yield**: 77%, **mp**: 165-167 °C (lit\(^3\) 167 °C), \(v_{\text{max/cm}^{-1}}\) (solid): 2227, 1660; \(^1\)H NMR (Acetone-\(d_6\), 400 MHz): \(\delta\) 9.88 (s, 1H), 8.07 (d, \(J = 8.8\) Hz, 2H), 8.00 (d, \(J = 7.4\) Hz, 2H), 7.76 (d, \(J = 8.8\) Hz, 2H), 7.61 (t, \(J = 7.4\) Hz, 1H), 7.53 (t, \(J = 7.4\) Hz, 2H); \(^{13}\)C NMR (DMSO-\(d_6\), 100 MHz): \(\delta\) 167.8, 145.4, 136.6, 134.8, 133.8, 130.4, 129.5, 121.9, 120.5, 108.3; **HRMS**: calculated for C\(_{14}\)H\(_9\)N\(_2\)O \([M-H]^−\) 221.0715 obtained 221.0714.

![Structure of N-(4-Cyanophenyl)acetamide (12)](image)

N-(4-Cyanophenyl)acetamide (12):\(^4\) White powder, **Yield**: 77%, **mp**: 204-206 °C (lit\(^4\) 206-208 °C), \(v_{\text{max/cm}^{-1}}\) (solid): 2221, 1667; \(^1\)H NMR (DMSO-\(d_6\), 400 MHz): \(\delta\) 10.39 (s, 1H), 7.75 (s, 4H), 2.09 (s, 3H); \(^{13}\)C NMR (DMSO-\(d_6\), 100 MHz): \(\delta\) 169.1, 143.4, 133.1, 118.9, 118.8, 104.6, 24.1; **HRMS**: calculated for C\(_9\)H\(_9\)N\(_2\)O \([M+H]^+\) 161.0715 obtained 161.0710.
N-(4-Fluorophenyl)benzamide (14): Yellow powder, **Yield**: 70%, **mp**: 179-181 °C (lit 184-185 °C), ν max/cm⁻¹(solid): 2985, 2904, 1652, 1519, 1385; ¹H NMR (MeOH-d₄, 400 MHz): δ 7.92 (brd, J = 7.1 Hz, 2H), 7.70-7.67 (m, 2H), 7.58-7.56 (m, 1H), 7.52-7.49 (m, 2H0, 7.09 (apt t, J = 8.8 Hz, 2H) ¹³C NMR (MeOH-d₄, 100 MHz): δ 168.9, 161.0 (d, J = 242 Hz), 136.1, 136.0 (d, J = 3.0 Hz), 135.8, 132.9 129.6, 124.2 (d, J = 7.9 Hz), 116.2 (d, J = 22.6 Hz); HRMS: calculated for C₁₃H₁₁FNO [M+H]+ 216.0819 obtained 216.0822.

N-(4-Flurophenyl)acetamide (13): Yellow powder, **Yield**: 70%; **mp**: 152-153 °C (lit 156-157 °C); ν max/cm⁻¹(solid): 3301, 1664, 1559, 1504, 1208; ¹H NMR (MeOH-d₄, 400 MHz): δ 7.52-7.49 (m, 2H), 7.03-6.99 (m, 2H), 2.10 (s, 3H); ¹³C NMR (MeOH-d₄, 100 MHz): δ 171.8, 160.6 (d, J = 241 Hz), 135.9 (d, J = 2.8 Hz), 123.2 (d, J = 7.8 Hz), 116.2 (d, J = 22.6 Hz), 23.7; HRMS: calculated for C₈H₉FNO (M+H⁺) 154.0663 obtained 154.0664.

N-(p-Tolyl)benzamide (15): Off white powder, **Yield**: 60%; **mp**: 152-154 °C (lit 157-158 °C); ν max/cm⁻¹(solid): 3338, 1650, 1521, 1319; ¹H NMR (MeOH-d₄, 400 MHz): δ 7.90 (d, J = 7.2 Hz, 2H), 7.58-7.48 (m, 5H), 7.17 (d, J = 8.2 Hz, 2H), 2.31
N-(p-Tolyl)acetamide (16): Off white powder, Yield: 72%; mp: 144-148 °C (Lit. 149-150 °C), ν_max/cm⁻¹(solid): 3288, 1656, 1604, 1513, 1320; ¹H NMR (CDCl₃, 400 MHz): δ 7.55 (brs, 1H), 7.36 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 2.29 (s, 3H), 2.13 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.4, 135.3, 133.8, 129.3, 12.0, 24.3, 20.7; HRMS: calculated for C₉H₁₂NO [M+H]+ 150.0913 obtained 150.0928.
1H NMR: N-(4-Nitrophenyl)benzamide (7)
13C NMR: N-(4-Nitrophenyl)benzamide (7)
1H NMR: N-(4-Nitrophenyl)acetamide (10)
13C NMR: \textit{N-(4-Nitrophenyl)acetamide (10)}
1H NMR: N-(4-Cyanophenyl)benzamide (11)
13C NMR: N-(4-Cyanophenyl)benzamide (11)
1H NMR: N-(4-Cyanophenyl)acetamide (12)
13C NMR: N-(4-Cyanophenyl)acetamide (12)
1H NMR: N-(4-Flurophenyl)acetamide (13)
13C NMR: N-(4-Flurophenyl)acetamide (13)
1H NMR: N-(4-Fluorophenyl)benzamide (14)
13C NMR: N-(4-Fluorophenyl)benzamide (14)
1H NMR: N-(p-Tolyl)benzamide (15)
13C NMR: N-(ρ-Tolyl)benzamide (15)
1H NMR: N-(p-Tolyl)acetamide (16)
13C NMR: N-(p-Tolyl)acetamide (16)