Supporting Information
© Georg Thieme Verlag KG Stuttgart · New York 2009
Remarkably mild and efficient CTAB-catalyzed Friedel-Crafts amidoalkylation of sesamols with in situ generated N-Boc-imines in aqueous medium: synthesis of novel 6-amidoalkyl sesamols

Hui Zhang, Ming-Gui Chen, Cun-Xia Lian, Wei-Cheng Yuan, Xiao-Mei Zhang

\textit{Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. of China}

\textit{Graduate School of Chinese Academy of Sciences, Beijing, 100049, China.}

\textit{School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.}

\textbf{Received:} The date will be inserted once the manuscript is accepted.

\textit{E-mail: xinzhang@cioc.ac.cn}

\section*{Supporting Information}

\section*{Table of Contents}

1. General Methods \hfill S1
2. General experimental procedures for the Friedel-Crafts reaction \hfill S1
3. NMR Spectra of Compounds 3a to 3v \hfill S9
1. General Methods.

N-Boc α-amido sulfones 1 were prepared according to literature procedures.\(^1\) Other reagents were obtained from commercial sources and were used without further purification. All reactions were conducted in a closed system with an atmosphere of air and were monitored by TLC. \(^1^H\) and \(^1^3^C\) NMR spectra were performed on a Brucker-300 MHz spectrometer for products dissolved by DMSO-\(d_6\) with tetramethylsilane (TMS) as an internal standard. Melting points were recorded on a Buchi Melting Point B-545.

2. General experimental procedure for the Friedel-Crafts amidoalkylation

N-Boc α-amido sulfone (0.2 mmol, 1.0 equiv), Na\(_2\)CO\(_3\) (0.3 mmol, 1.5 equiv), CTAB (0.02 mmol, 10%) and 2 mL of water was put in a 10 mL glass vial equipped with a small magnetic stirring bar. To the solution was added sesamol (0.24 mmol, 1.2eq). After stirring for the stipulated time at 30°C, the mixture was diluted with water (3 mL) and extracted with ethyl ether (3 ×25 mL). The organic layers were combined, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was subjected to silica gel flash chromatography (Ethyl acetate / Hexanes = 1 / 10) to give the pure product.

Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(phenyl)methylcarbamate (3a)

Yield: 97%; White solid; m.p.: 168.5-168.9 °C; \(^1^H\) NMR (300 MHz, d\(_6\)-DMSO): \(\delta\) 9.31 (s, 1H), 7.61 (d, 1H, \(J = 9.6\) Hz), 7.29-7.22 (m, 4H), 7.19-7.14 (m, 1H), 6.92 (s, 1H), 6.42 (s, 1H), 6.11 (d, 1H, \(J = 9.6\) Hz), 5.88 (s, 1H, \(J = 0.6\) Hz), 5.84 (s, 1H, \(J = 0.6\) Hz), 1.39 (s, 9H); \(^1^3^C\) NMR (75 MHz, d\(_6\)-DMSO): \(\delta\) 154.99, 148.49, 146.09, 143.67, 139.83, 128.03, 126.63, 126.36, 121.09, 107.39, 100.60, 97.39, 77.99, 51.21, 28.28; HRMS (ESI) Calcd for C\(_{19}\)H\(_{21}\)NNaO\(_5\) (M+Na): 366.1317; Found: 366.1312.

Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(p-tolyl)methylcarbamate (3b)

Yield: 95%; White solid; m.p.: 180.8-181.6 °C; \(^1^H\) NMR (300 MHz, d\(_6\)-DMSO): \(\delta\) 9.25 (s, 1H), 7.56 (d, 1H, \(J = 9.6\) Hz), 7.12-7.04 (m, 4H), 6.89 (s, 1H), 6.39 (s, 1H), 6.04 (d, 1H, \(J = 9.6\) Hz), 5.88 (s, 1H, \(J = 0.6\) Hz), 5.84 (s, 1H, \(J = 0.6\) Hz), 2.23 (s, 3H), 1.38 (s, 9H); \(^1^3^C\) NMR (75 MHz, d\(_6\)-DMSO): \(\delta\) 154.94, 148.41, 145.97, 140.69, 139.76, 135.32, 128.54, 126.55, 121.29, 107.35, 100.55, 97.33, 77.90, 50.89, 28.28, 20.58; HRMS (ESI) Calcd for C\(_{20}\)H\(_{23}\)NNaO\(_5\) (M+Na): 380.1474; Found: 380.1468.
Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(m-tolyl)methylcarbamate (3c)
Yield: 90%; White solid; m.p.: 78.1-79.7 °C; \(^1\)H NMR (300 MHz, \(d_6\)-DMSO): \(\delta\) 9.29 (s, 1H), 7.58 (d, 1H, \(J = 9.6\) Hz), 7.15 (t, 1H, \(J = 7.5\) Hz), 7.05-6.97 (m, 3H), 6.91 (s, 1H), 6.41 (s, 1H), 6.06 (d, 1H, \(J = 9.6\) Hz), 5.88 (s, 1H, \(J = 0.6\) Hz), 5.85 (s, 1H, \(J = 0.6\) Hz), 2.25 (s, 3H), 1.39 (s, 9H); \(^{13}\)C NMR (75 MHz, \(d_6\)-DMSO): \(\delta\) 154.97, 148.45, 146.04, 143.65, 139.79, 136.98, 127.96, 127.24, 127.00, 123.79, 121.21, 107.40, 100.59, 97.37, 77.95, 51.16, 28.29, 21.16; HRMS (ESI) Calcd for C\(_{20}\)H\(_{23}\)NNaO\(_5\) (M+Na): 380.1474; Found: 380.1468.

Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(4-methoxyphenyl)methylcarbamate (3d)
Yield: 91%; White solid; m.p.: 82.5-85.8 °C; \(^1\)H NMR (300 MHz, \(d_6\)-DMSO): \(\delta\) 9.24 (s, 1H), 7.54 (d, 1H, \(J = 9.6\) Hz), 7.13 (d, 2H, \(J = 8.7\) Hz), 6.91 (s, 1H), 6.82 (d, 2H, \(J = 8.7\) Hz), 6.40 (s, 1H), 6.03 (d, 1H, \(J = 9.6\) Hz), 5.88 (s, 1H, \(J = 0.6\) Hz), 5.85 (s, 1H, \(J = 0.6\) Hz), 3.70 (s, 3H), 1.38 (s, 9H); \(^{13}\)C NMR (75 MHz, \(d_6\)-DMSO): \(\delta\) 157.83, 154.92, 148.38, 145.95, 139.77, 135.67, 127.96, 127.24, 127.00, 123.79, 121.21, 107.40, 100.54, 97.35, 77.89, 55.02, 50.69, 28.27; HRMS (ESI) Calcd for C\(_{20}\)H\(_{23}\)NNaO\(_6\) (M+Na): 396.1423; Found: 396.1418.

Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(2-methoxyphenyl)methylcarbamate (3e)
Yield: 85%; White solid; m.p.: 185.3-186.2 °C; \(^1\)H NMR (300 MHz, \(d_6\)-DMSO): \(\delta\) 9.16 (s, 1H), 7.22-7.15 (m, 3H), 6.93-6.85 (m, 2H), 6.62 (s, 1H), 6.39 (s, 1H), 6.24 (d, 1H, \(J = 9.6\) Hz), 5.86 (s, 1H, \(J = 0.6\) Hz), 5.84 (d, 1H, \(J = 0.6\) Hz), 3.72 (s, 3H), 1.38 (s, 9H); \(^{13}\)C NMR (75 MHz, \(d_6\)-DMSO): \(\delta\) 156.53, 154.64, 149.14, 146.02, 139.29, 130.99, 127.90, 127.67, 120.39, 119.88, 110.90, 107.97, 100.52, 97.41, 77.65, 55.43, 47.14, 28.29; HRMS (ESI) Calcd for C\(_{20}\)H\(_{23}\)NNaO\(_6\) (M+Na): 396.1423; Found: 396.1418.
Tert-butyl (4-fluorophenyl)(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3f) Yield: 95%; White solid; m.p.: 111.6-112.4 °C; 1H NMR (300 MHz, d_6-DMSO): δ 9.33 (s, 1H), 7.63 (d, 1H, $J = 9.3$ Hz), 7.26 (q, 2H, $J_1 = 8.4$ Hz, $J_2 = 5.7$ Hz), 7.09 (t, 2H, $J = 8.8$ Hz), 6.93 (s, 1H), 6.43 (s, 1H), 6.09 (d, 1H, $J = 9.3$ Hz), 5.89 (d, 1H, $J = 0.6$ Hz), 5.85 (d, 1H, $J = 0.6$ Hz), 1.39 (s, 9H); 13C NMR (75 MHz, d_6-DMSO): δ 162.49, 159.28, 154.96, 148.78, 146.20, 139.90, 139.83, 139.79, 128.58, 128.48, 120.90, 114.85, 114.57, 107.18, 100.63, 97.46, 78.09, 50.75, 28.25; HRMS (ESI) Calcd for C$_{19}$H$_{20}$FNNaO$_5$ (M+Na)$^+$: 384.1223; Found: 384.1218.

Tert-butyl (3-fluorophenyl)(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3g) Yield: 91%; White solid; m.p.: 145.6-146.8 °C; 1H NMR (300 MHz, d_6-DMSO): δ 9.40 (s, 1H), 7.70 (d, 1H, $J = 9.6$ Hz), 7.31 (q, 1H, $J_1 = 14.4$ Hz, $J_2 = 7.5$ Hz), 7.08 (d, 1H, $J = 7.8$ Hz), 7.03-6.97 (m, 2H), 6.92 (s, 1H), 6.43 (s, 1H), 6.12 (d, 1H, $J = 9.6$ Hz), 5.89 (d, 1H, $J = 0.7$ Hz), 5.85 (d, 1H, $J = 0.7$ Hz), 1.39 (s, 9H); 13C NMR (75 MHz, d_6-DMSO): δ 163.72, 160.50, 154.98, 148.49, 146.81, 146.72, 146.32, 139.94, 130.09, 129.98, 122.75, 122.71, 120.46, 113.27, 113.02, 112.98, 107.15, 100.69, 97.46, 78.20, 50.85, 28.25; HRMS (ESI) Calcd for C$_{19}$H$_{20}$FNNaO$_5$ (M+Na)$^+$: 384.1223; Found: 384.1218.

Tert-butyl (4-chlorophenyl)(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3h) Yield: 92%; White solid; m.p.: 81.2-82.8 °C; 1H NMR (300 MHz, d_6-DMSO): δ 9.33 (s, 1H), 7.65 (d, 1H, $J = 9.6$ Hz), 7.33 (d, 2H, $J = 8.4$ Hz), 7.22 (d, 2H, $J = 8.4$ Hz), 6.90 (s, 1H), 6.40 (s, 1H), 6.06 (d, 1H, $J = 9.6$ Hz), 5.88 (d, 1H, $J = 0.6$ Hz), 5.85 (d, 1H, $J = 0.6$ Hz), 1.38 (s, 9H); 13C NMR (75 MHz, d_6-DMSO): δ 154.58, 148.42, 146.19, 142.57, 139.82, 130.89, 128.41, 127.91, 120.44, 107.11, 100.57, 97.38, 78.06, 50.75, 28.17; HRMS (ESI) Calcd. for C$_{19}$H$_{20}$ClNNaO$_5$ (M+Na)$^+$: 400.0928; Found: 400.0922.
Tert-butyl (4-bromophenyl)(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3i) Yield: 96%; White solid; m.p.: 92.3-94.5 °C; 1H NMR (300 MHz, d$_6$-DMSO): δ 9.36 (s, 1H), 7.64 (d, 1H, $J = 9.0$ Hz), 7.46 (d, 2H, $J = 8.4$ Hz), 7.18 (d, 2H, $J = 8.4$ Hz), 6.90 (s, 1H), 6.42 (s, 1H), 6.06 (d, 1H, $J = 9.0$ Hz), 5.89 (d, 1H, $J = 0.6$ Hz), 5.85 (d, 1H, $J = 0.6$ Hz), 1.38 (s, 9H); 13C NMR (75 MHz, d$_6$-DMSO): δ 154.95, 148.51, 146.28, 143.10, 139.90, 130.93, 128.89, 120.45, 119.47, 107.19, 100.66, 97.45, 78.15, 50.87, 28.24; HRMS (ESI) Calcd for C$_{19}$H$_{20}$BrNNaO$_5$ (M+Na)$^+$: 444.0423; Found: 444.0417.

Tert-butyl (3-bromophenyl)(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3j) Yield: 97%; White solid; m.p.: 85.5-87.7 °C; 1H NMR (300 MHz, d$_6$-DMSO): 9.41 (s, 1H), 7.69 (d, 1H, $J = 9.6$ Hz), 7.41-7.36 (m, 2H), 7.25-7.23 (m, 2H), 6.92 (s, 1H), 6.43 (s, 1H), 6.09 (d, 1H, $J = 9.6$ Hz), 5.89 (d, 1H, $J = 0.6$ Hz), 5.86 (d, 1H, $J = 0.6$ Hz), 1.38 (s, 9H); 13C NMR (75 MHz, d$_6$-DMSO): δ 154.97, 148.49, 146.50, 146.38, 139.97, 130.34, 129.29, 129.20, 125.80, 121.47, 120.30, 107.10, 100.71, 97.50, 78.26, 50.94, 28.23; HRMS (ESI) Calcd for C$_{19}$H$_{20}$BrNNaO$_5$ (M+Na)$^+$: 444.0423; Found: 444.0417.

Tert-butyl (2-bromophenyl)(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3k) Yield: 90%; White solid; m.p.: 100.8-103.0 °C; 1H NMR (300 MHz, d$_6$-DMSO): δ 9.28 (s, 1H), 7.56 (d, 1H, $J = 7.8$ Hz), 7.46 (d, 1H, $J = 8.4$ Hz), 7.33 (t, 1H, $J = 7.2$ Hz), 7.30 (d, 1H, $J = 7.2$ Hz), 7.20-7.14 (m, 1H), 6.43 (d, 2H, $J = 8.4$ Hz), 6.20 (d, 1H, $J = 8.4$ Hz), 5.88 (s, 1H, $J = 0.6$ Hz), 5.86 (s, 1H, $J = 0.6$ Hz), 1.37 (s, 9H); 13C NMR (75 MHz, d$_6$-DMSO) δ 154.57, 149.55, 146.41, 141.99, 139.34, 132.59, 128.94, 128.69, 127.36, 123.41, 119.04, 107.74, 100.65, 97.41, 77.81, 51.82, 28.28; HRMS (ESI) Calcd for C$_{19}$H$_{20}$BrNNaO$_5$ (M+Na)$^+$: 444.0423; Found: 444.0417.
Tert-butyl(6-hydroxybenzo[d][1,3]dioxol-5-yl)(3-(trifluoromethyl)phenyl)methyl carbamate (3l)
Yield: 88%; White solid; m.p.: 75.5-76.1 °C; 1H NMR (300 MHz, d$_6$-DMSO): δ 9.45 (s, 1H), 7.79 (d, 1H, $J = 9.6$ Hz), 7.59-7.51 (m, 4H), 6.94 (s, 1H), 6.43 (s, 1H), 6.17 (d, 1H, $J = 9.6$ Hz), 5.88 (s, 1H, $J = 0.6$ Hz), 5.86 (s, 1H, $J = 0.6$ Hz), 1.39 (s, 9H); 13C NMR (75 MHz, d$_6$-DMSO): δ 155.02, 148.56, 146.45, 145.08, 139.99, 130.81, 130.48, 129.71, 129.50, 129.20, 129.09, 128.67, 128.26, 126.10, 123.24, 123.19, 122.90, 122.85, 122.80, 122.75, 122.49, 107.06, 100.71, 97.52, 78.32, 51.19, 28.18; HRMS (ESI) Calcd for C$_{20}$H$_{20}$F$_3$NNaO$_5$ (M+Na)$^+$: 434.1191; Found: 434.1186.

Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(naphthen-1-yl)methyl-carbamate (3m)
Yield: 93%; White solid; m.p.: 111.8-113.3 °C; 1H NMR (300 MHz, d$_6$-DMSO): δ 9.43 (s, 1H), 8.12 (d, 1H, $J = 5.4$ Hz), 7.91 (dd, 1H, $J_1 = 5.4$ Hz, $J_2 = 1.5$ Hz), 7.80 (d, 1H, $J = 5.4$ Hz), 7.68 (d, 1H, $J = 9.0$ Hz), 7.51-7.37 (m, 4H), 6.81 (d, 1H, $J = 9.0$ Hz), 6.70 (s, 1H), 6.48 (d, 2H, $J = 4.8$ Hz), 5.89 (s, 1H, $J = 0.6$ Hz), 5.84 (s, 1H, $J = 0.6$ Hz), 1.39 (s, 9H); 13C NMR (75 MHz, d$_6$-DMSO): δ 154.81, 148.60, 146.54, 139.59, 139.40, 133.40, 130.86, 128.53, 127.24, 126.00, 125.55, 125.46, 123.75, 123.52, 120.13, 108.11, 100.64, 97.44, 77.91, 47.67, 28.28; HRMS (ESI) Calcd for C$_{23}$H$_{23}$NNaO$_5$ (M+Na)$^+$: 416.1474; Found: 416.1468.

Tert-butyl furan-2-yl(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3n)
Yield: 91%; White solid; m.p.: 168.5-168.9 °C; 1H NMR (300 MHz, d$_6$-DMSO): δ 9.33 (s, 1H), 7.62 (d, 1H, $J = 9.0$ Hz), 7.52 (s, 1H), 6.88 (s, 1H), 6.42 (s, 1H), 6.31 (s, 1H), 6.10 (d, 1H, $J = 9.0$ Hz), 5.90 (s, 1H), 5.89 (d, 1H, $J = 0.6$ Hz), 5.87 (d, 1H, $J = 0.6$ Hz), 1.38 (s, 9H); 13C NMR (75 MHz, d$_6$-DMSO): δ 155.69, 154.84, 148.77, 146.49, 141.90, 139.73, 118.50, 110.23, 107.56, 106.16, 100.67, 97.33, 78.11, 45.73, 28.26; HRMS (ESI) Calcd for C$_{17}$H$_{19}$NNaO$_6$ (M+Na)$^+$: 356.1100; Found: 356.1105.
Tert-butyl (6-hydroxybenzo[d][1,3]dioxol-5-yl)(thiophen-2-yl)methylcarbamate (3o) Yield: 85%; White solid; m.p.: 171.2-172.6 °C; \(^1\)H NMR (300 MHz, d\(_6\)-DMSO): \(\delta\) 9.38 (s, 1H), 7.78 (d, 1H, \(J = 9.6\) Hz), 7.31 (d, 1H, \(J = 4.5\) Hz), 6.98 (s, 1H), 6.88 (dd, 1H, \(J_1 = 4.8\) Hz, \(J_2 = 3.6\) Hz), 6.67 (d, 1H, \(J = 3.0\) Hz), 6.43 (s, 1H), 6.27 (d, 1H, \(J = 9.6\) Hz), 5.90 (d, 1H, \(J = 0.6\) Hz), 5.88 (d, 1H, \(J = 0.6\) Hz), 1.39 (s, 9H); \(^{13}\)C NMR (75 MHz, d\(_6\)-DMSO): \(\delta\) 154.80, 148.44, 148.08, 146.40, 139.78, 126.47, 124.33, 123.96, 120.52, 107.23, 100.64, 97.31, 78.16, 47.32, 28.22; HRMS (ESI) Calcd for C\(_{17}\)H\(_{19}\)NNaO\(_5\)S (M+Na): 372.0882; Found: 372.0876.

Tert-butyl 1-(6-hydroxybenzo[d][1,3]dioxol-5-yl)-2-methylpropylcarbamate (3p) Yield: 93%; White solid; m.p.: 88.5-89.8 °C; \(^1\)H NMR (300 MHz, d\(_6\)-DMSO): \(\delta\) 7.60 (d, 1H, \(J = 9.9\) Hz), 6.77 (d, 1H, \(J = 8.4\) Hz), 6.63 (d, 1H, \(J = 2.4\) Hz), 6.41 (dd, 1H, \(J_1 = 8.4\) Hz, \(J_2 = 2.4\) Hz), 5.93 (d, 1H, \(J = 0.6\) Hz), 5.92 (d, 1H, \(J = 0.6\) Hz), 5.07 (dd, 1H, \(J_1 = 8.7\) Hz, \(J_2 = 7.8\) Hz), 1.95 (q, 1H, \(J = 6.9\) Hz), 1.35 (s, 9H), 0.94 (d, 3H, \(J = 6.9\) Hz), 0.88 (d, 3H, \(J = 6.9\) Hz); \(^{13}\)C NMR (75 MHz, d\(_6\)-DMSO): \(\delta\) 155.17, 152.28, 147.69, 141.47, 108.53, 107.96, 100.93, 99.44, 85.18, 78.35, 41.79, 28.29, 28.07, 27.58, 25.85, 25.24, 25.15; HRMS (ESI) Calcd for C\(_{16}\)H\(_{23}\)NO\(_3\) M+: 309.1576; Found: 309.1571.

Tert-butyl cyclohexyl(6-hydroxybenzo[d][1,3]dioxol-5-yl)methylcarbamate (3q) Yield: 95%; White solid; m.p.: 107.0-108.9 °C; \(^1\)H NMR (300 MHz, d\(_6\)-DMSO): \(\delta\) 7.58 (d, 1H, \(J = 9.9\)Hz), 6.76 (d, 1H, \(J = 8.4\) Hz), 6.63 (d, 1H, \(J = 2.4\) Hz), 6.41 (dd, 1H, \(J_1 = 8.4\) Hz, \(J_2 = 2.4\) Hz), 5.93-5.88 (m, 2H), 5.08 (dd, 1H, \(J_1 = 8.7\) Hz, \(J_2 = 7.8\) Hz), 1.88 (d, 1H, \(J = 12.0\) Hz), 1.68-1.37 (m, 6H), 1.35 (s, 9H), 1.25-0.94 (m, 4H); \(^{13}\)C NMR (75 MHz, d\(_6\)-DMSO): \(\delta\) 155.17, 152.28, 147.69, 141.47, 108.53, 107.96, 100.93, 99.44, 85.18, 78.35, 41.79, 28.29, 28.07, 27.58, 25.85, 25.24, 25.15; HRMS (ESI) Calcd for C\(_{19}\)H\(_{27}\)NNaO\(_5\) (M+Na): 372.1787; Found: 372.1781.
Tert-butyl (6-hydroxy-7-methylbenzo[d][1,3]dioxol-5-yl)(phenyl)methylcarbamate (3r) Yield: 83%; White solid; m.p.: 88.2-90.9 °C; \(^1\)H NMR (300 MHz, \(d_6\)-DMSO): \(\delta\) 8.28 (s, 1H), 7.63 (d, 1H, \(J = 9.6\) Hz), 7.29-7.14 (m, 5H), 6.77 (s, 1H), 6.20 (s, 1H), 5.87 (d, 1H, \(J = 0.6\) Hz), 5.85 (d, 1H, \(J = 0.6\) Hz), 2.04 (s, 3H), 1.39 (s, 9H); \(^{13}\)C NMR (75 MHz, \(d_6\)-DMSO) \(\delta\) 155.05, 146.49, 144.74, 143.69, 139.78, 128.02, 126.74, 126.34, 123.01, 108.23, 104.47, 100.40, 77.99, 51.69, 28.28, 9.63; HRMS (ESI) Calcd for C\(_{20}\)H\(_{23}\)NNaO\(_5\) (M+Na)\(^+\): 380.1474; Found: 380.1468.

Tert-butyl (6-hydroxy-7-iodobenzo[d][1,3]dioxol-5-yl)(phenyl)methylcarbamate (3s) Yield: 95%; White solid; m.p.: 127.3-128.9 °C; \(^1\)H NMR (300 MHz, \(d_6\)-DMSO): \(\delta\) 8.70 (s, 1H), 7.70 (d, 1H, \(J = 9.3\) Hz), 7.31-7.16 (m, 5H), 6.88 (s, 1H), 6.23 (d, 1H, \(J = 9.3\) Hz), 6.00 (d, 1H, \(J = 0.6\) Hz), 5.96 (d, 1H, \(J = 0.6\) Hz), 1.39 (s, 9H); \(^{13}\)C NMR (75 MHz, \(d_6\)-DMSO) \(\delta\) 155.01, 148.42, 147.45, 143.00, 139.83, 128.11, 126.75, 126.56, 124.27, 107.07, 100.53, 78.16, 69.12, 52.18, 28.25; HRMS (ESI) Calcd for C\(_{19}\)H\(_{20}\)INaO\(_5\) (M+Na)\(^+\): 492.0284; Found: 492.0296.

Tert-butyl (2-hydroxynaphthalen-1-yl)(phenyl)methylcarbamate (3t) Yield: 91%; White solid; m.p.: 218.0-219.1 °C; \(^1\)H NMR (300 MHz, \(d_6\)-DMSO): \(\delta\) 10.13 (s, 1H), 7.94 (d, 1H, \(J = 8.7\) Hz), 7.83-7.76 (m, 2H), 7.42 (t, 1H), 7.31-7.16 (m, 8H), 6.81 (d, 1H, \(J = 8.7\) Hz), 1.40 (s, 9H); \(^{13}\)C NMR (75 MHz, \(d_6\)-DMSO) \(\delta\) 155.22, 152.75, 142.72, 132.04, 129.21, 128.56, 128.31, 128.06, 126.67, 126.28, 125.90, 122.72, 122.57, 119.07, 118.53, 78.41, 49.81, 28.15; HRMS (ESI) Calcd for C\(_{22}\)H\(_{23}\)NNaO\(_5\) (M+Na)\(^+\): 372.1576; Found: 372.1570.
Tert-butyl (6-bromo-2-hydroxynaphthalen-1-yl)(phenyl)methylcarbamate (3u)
Yield: 87%; White solid; m.p.: 211.3-212.4 °C; 1H NMR (300 MHz, d_6-DMSO): δ 10.29 (s, 1H), 8.08 (d, 1H, $J = 1.8$ Hz), 7.87 (d, 1H, $J = 9.0$ Hz), 7.76 (d, 1H, $J = 9.0$ Hz), 7.49 (d, 1H, $J = 8.4$ Hz), 7.28-7.14 (m, 7H), 6.77 (d, 1H, $J = 9.0$ Hz), 1.39 (s, 9H); 13C NMR (75 MHz, d_6-DMSO): δ 155.27, 153.29, 142.37, 130.71, 130.17, 129.65, 129.24, 128.52, 128.10, 126.35, 125.88, 125.50, 119.69, 119.46, 115.37, 78.42, 49.71, 28.15; C$_{22}$H$_{22}$BrNaO$_3$ (M+Na)$^+$: 450.0681; Found: 450.0675.

Reference:

Tert-butyl (1-hydroxynaphthalen-2-yl)(phenyl)methylcarbamate (3v)
Yield: 52%; White solid; m.p.: 94.6-96.8 °C; 1H NMR (300 MHz, d_6-DMSO): δ 10.11 (s, 1H), 8.17 (dd, 1H, $J_1 = 9.3$ Hz, $J_2 = 1.5$ Hz), 7.96 (d, 1H, $J = 8.1$ Hz), 7.85 (d, 1H, $J = 8.1$ Hz), 7.49-7.44 (m, 2H), 7.31-7.23 (m, 5H), 7.05 (d, 1H, $J = 7.8$ Hz), 6.78 (d, 1H, $J = 7.8$ Hz), 6.44 (s, 1H), 5.89 (s, 1H), 5.87 (s, 1H), 1.33 (s, 9H); 13C NMR (75 MHz, d_6-DMSO): δ 152.63, 142.83, 131.90, 128.64, 128.20, 127.53, 126.78, 126.40, 125.81, 124.79, 124.30, 123.30, 122.63, 107.10, 78.00, 53.73, 28.27; HRMS (ESI) Calcd for C$_{22}$H$_{23}$NNaO$_3$ (M+Na)$^+$: 372.1576; Found: 372.1570.
^{1}H and ^{13}C NMR of 3a
1H and 13C NMR of 3b
1H and 13C NMR of 3c
1H and 13C NMR of 3d
\[^{1}H \text{ and } ^{13}C \text{ NMR of 3e} \]
^{1}H and ^{13}C NMR of 3f
1H and 13C NMR of 3g
1H and 13C NMR of 3h
1H and 13C NMR of 3i
1H and 13C NMR of 3j
^{1}H and ^{13}C NMR of 3k
1H and 13C NMR of 3l
1H and 13C NMR of 3m
1H and 13C NMR of 3n
1H and 13C NMR of 3o
1H and 13C NMR of 3q
1H and 13C NMR of 3r
1H and 13C NMR of 3t
\textbf{H and 13C NMR of 3u}
1H and 13C NMR of 3v