Supporting Information
© Georg Thieme Verlag KG Stuttgart · New York 2009
Supporting Information

Experimental:

Melting points were determined in open capillaries and are uncorrected. IR spectra (v_{max} in cm$^{-1}$) were recorded using samples as neat liquids and solid samples were recorded in KBr disks. 1H NMR (300, 400 and 500 MHz) spectra were recorded in CDCl$_3$ and DMSO-d$_6$ (chemical shift in δ) with TMS as internal standard. Silica gel [(60-120, 230-400 mesh), Rankem, India] was used for chromatographic separation. Silica gel G [E-Merck (India)] was used for TLC. Petroleum ether refers to the fraction boiling between 60 °C and 80 °C.

General procedure for the preparation of compound 5a-h:

A mixture of compound (4a-c) and arylsulfonyl chloride (1 equiv) in pyridine (4 mL) was stirred at 80 °C for 2 h and then cooled in an ice bath and left overnight. It was then extracted with ethyl acetate (3x15 mL), washed with dil HCl (2x10 mL), brine (10 mL) and dried (Na$_2$SO$_4$). The solvent was distilled off. The resulting crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum ether-ethyl acetate (70:30) mixture as eluent to give compounds 5a-h.

N-(5-allyl-1-ethyl-2-oxo-1,2-dihydroquinolin-6-yl)benzenesulfonamide (5a):

Yield: 92 %, colourless solid; mp 182 °C; IR (KBr): v_{max} = 1374, 1670, 2969, 3436 cm$^{-1}$; 1H-NMR (CDCl$_3$, 500 MHz): δ_H = 1.35 (t, J = 7.1 Hz, 3H), 3.29 (d, J = 5.1 Hz, 2H), 4.32 (q, J = 7.1 Hz, 2H), 4.70 (d, J = 17.2 Hz, 1H), 5.04 (d, J = 10.2 Hz, 1H), 5.76-5.83 (m, 1H), 6.55 (s, 1H), 6.68 (d, J = 9.9 Hz, 1H), 7.26 (d, J = 9.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 7.55 (d, J = 9.3 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.71-7.73 (m, 3H) ppm. MS: m/z = 368 (M$^+$). Anal. Calcd. for C$_{20}$H$_{20}$N$_2$O$_3$S: C, 65.20; H, 5.47; N, 7.60 %; found: C, 65.43; H, 5.51; N, 7.49 %

N-(5-allyl-1-ethyl-2-oxo-1,2-dihydroquinolin-6-yl)-4-methylbenzenesulfonamide (5b):

Yield: 95 %, colourless solid; mp 172 °C; IR (KBr): v_{max} = 1643, 2745, 2922, 3434 cm$^{-1}$; 1H-NMR (CDCl$_3$, 500 MHz): δ_H = 1.35 (t, J = 7.0 Hz, 3H), 2.40 (s, 3H), 3.31 (d, J = 4.3 Hz, 2H), 4.34 (q, J = 6.8 Hz, 2H), 4.71 (d, J = 17.2 Hz, 1H), 5.05 (d, J = 10.1 Hz, 1H), 5.78-5.84 (m, 1H), 6.48 (s, 1H), 6.68 (d, J = 9.8 Hz, 1H), 7.23 (m, 3H), 7.56 (d, J = 9.1 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 9.8 Hz, 1H) ppm. MS: m/z = 382 (M$^+$).
Anal. Calcd. for C_{21}H_{22}N_{2}O_{3}S: C, 65.95%; H, 5.80%; N, 7.32%; found: C, 65.79%; H, 5.83%; N, 7.39%

N-(5-allyl-1-ethyl-2-oxo-1,2-dihydroquinolin-6-yl)-4-methoxybenzenesulfonamide (5c):

Yield: 84 %, colourless solid; mp 153 °C; IR (KBr): \(\nu_{\text{max}} = 1152, 1644, 3081, 3445 \text{ cm}^{-1} \);

\(^1\)H-NMR (CDCl\(_3\), 400 MHz): \(\delta_H = 1.35 \) (t, \(J = 7.2 \) Hz, 3H), 3.33-3.34 (m, 2H), 3.85 (s, 3H), 4.33-4.37 (m, 2H), 4.72 (d, \(J = 17.2 \) Hz, 1H), 5.06 (d, \(J = 10.0 \) Hz, 1H), 5.79-5.88 (m, 1H), 6.46 (s, 1H), 6.68 (d, \(J = 9.6 \) Hz, 1H), 6.90 (d, \(J = 9.2 \) Hz, 2H), 7.26 (d, \(J = 8.4 \) Hz, 1H), 7.56 (d, \(J = 9.2 \) Hz, 1H), 7.64 (dd, \(J = 2.0, 7.2 \) Hz, 2H), 7.72 (d, \(J = 10.0 \) Hz, 1H) ppm. MS: m/z = 398 (M\(^+\)). Anal. Calcd. for C\(_{21}\)H\(_{22}\)N\(_2\)O\(_4\)S: C, 63.30%; H, 5.56%; N, 7.03%; found: C, 63.52%; H, 5.49%; N, 7.01 %

N-(5-allyl-1-methyl-2-oxo-1,2-dihydroquinolin-6-yl)benzenesulfonamide (5d):

Yield: 89 %, pale yellow solid; mp 164 °C; IR (KBr): \(\nu_{\text{max}} = 1577, 1641, 2851, 3436 \text{ cm}^{-1} \);

\(^1\)H-NMR (CDCl\(_3\), 500 MHz): \(\delta_H = 3.29 \) (d, \(J = 2.5 \) Hz, 2H), 3.71 (s, 3H), 4.69 (dd, \(J = 0.8, 17.3 \) Hz, 1H), 5.05 (dd, \(J = 1.0, 10.0 \) Hz, 1H), 5.77-5.83 (m, 1H), 6.51 (s, 1H), 6.69 (d, \(J = 10.0 \) Hz, 1H), 7.26 (t, \(J = 4.9 \) Hz, 1H), 7.45 (t, \(J = 7.7 \) Hz, 2H), 7.56-7.59 (m, 2H), 7.71 (d, \(J = 7.4 \) Hz, 2H), 7.73 (d, \(J = 10.0 \) Hz, 1H) ppm. MS: m/z = 354 (M\(^+\)). Anal. Calcd. for C\(_{19}\)H\(_{18}\)N\(_2\)O\(_3\)S: C, 64.39%; H, 5.12%; N, 7.90%; found: C, 64.53%; H, 5.07%; N, 7.99 %

N-(5-allyl-1-methyl-2-oxo-1,2-dihydroquinolin-6-yl)-4-methylbenzenesulfonamide (5e):

Yield: 93 %, yellow solid; mp 134 °C; IR (KBr): \(\nu_{\text{max}} = 1578, 1643, 2846, 3097 \text{ cm}^{-1} \);

\(^1\)H-NMR (CDCl\(_3\), 500 MHz): \(\delta_H = 2.40 \) (s, 3H), 3.30 (t, \(J = 2.4 \) Hz, 2H), 3.71 (s, 3H), 4.69 (d, \(J = 16.8 \) Hz, 1H), 5.05 (d, \(J = 10.4 \) Hz, 1H), 5.77-5.87 (m, 1H), 6.44 (s, 1H), 6.69 (d, \(J = 10.0 \) Hz, 1H), 7.21-7.29 (m, 3H), 7.57-7.60 (m, 3H), 7.72 (d, \(J = 10.0 \) Hz, 1H) ppm. MS: m/z = 368 (M\(^+\)). Anal. Calcd. for C\(_{20}\)H\(_{20}\)N\(_2\)O\(_3\)S: C, 65.20%; H, 5.47%; N, 7.60%; found: C, 65.45%; H, 5.49%; N, 7.48 %

N-(5-allyl-1-methyl-2-oxo-1,2-dihydroquinolin-6-yl)-4-methoxybenzenesulfonamide (5f):

Yield: 82 %, pale yellow gummy mass; IR (KBr): \(\nu_{\text{max}} = 1156, 1645, 2850, 3078 \text{ cm}^{-1} \);

\(^1\)H-NMR (CDCl\(_3\), 400 MHz): \(\delta_H = 3.32 \) (d, \(J = 5.2 \) Hz, 2H), 3.71 (s, 3H), 3.84 (s, 3H),
4.69 (d, J = 17.6 Hz, 1H), 5.06 (dd, J = 1.2, 10.4 Hz, 1H), 5.79-5.87 (m, 1H), 6.37 (s, 1H), 6.69 (d, J = 10.0 Hz, 1H), 6.89 (dd, J = 2.0, 7.2 Hz, 2H), 7.25 (d, J = 9.2 Hz, 1H), 7.58 (d, J = 9.2 Hz, 1H), 7.62 (dd, J = 2.0, 7.2 Hz, 2H), 7.72 (d, J = 10.0 Hz, 1H). ppm. MS: m/z = 384 (M⁺). Anal. Calcd. for C₂₀H₂₀N₂O₄S: C, 62.48; H, 5.24; N, 7.29 %; found: C, 62.37; H, 5.29; N, 7.38 %

N-(5-allyl-2-oxo-2H-chromen-6-yl)benzenesulfonamide (5g):
Yield: 88 %, brownish liquid; IR (KBr): νmax = 1597, 1731, 2852, 3523 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δH = 3.33 (dd, J = 2, 3.2 Hz, 2H), 4.72 (dd, J = 0.8, 17.3 Hz, 1H), 5.07 (dd, J = 0.9, 10.2 Hz, 1H), 5.76-5.83 (m, 1H), 6.40 (d, J = 9.9 Hz, 1H), 6.59 (s, 1H), 7.16 (d, J = 8.9 Hz, 1H), 7.43 (d, J = 9.0 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 9.9 Hz, 1H) ppm. MS: m/z = 341 (M⁺). Anal. Calcd. for C₁₈H₁₅NO₄S: C, 63.33; H, 4.43; N, 4.10 %; found: C, 63.13; H, 4.51; N, 4.18 %

N-(5-allyl-2-oxo-2H-chromen-6-yl)-4-methylbenzenesulfonamide (5h):
Yield: 96 %, colourless solid; mp 122 °C; IR (KBr): νmax = 1597, 1731, 2957, 3455 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δH = 2.41 (s, 3H), 3.33 (d, J = 4.0 Hz, 2H), 4.74 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 10.0 Hz, 1H), 5.78-5.85 (m, 1H), 6.40 (d, J = 10.0 Hz, 1H), 6.42 (s, 1H), 7.17 (d, J = 8.9 Hz, 1H), 7.22-7.26 (m, 2H), 7.44 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 7.9 Hz, 2H), 7.75 (d, J = 9.9 Hz, 1H) ppm. MS: m/z = 355 (M⁺). Anal. Calcd. for C₁₉H₁₇NO₄S: C, 64.21; H, 4.82; N, 3.94 %; found: C, 64.02; H, 4.90; N, 4.99 %

3-(4-methoxyphenylsulfonyl)-2-methyl-2,3-dihydropyrano[3,2-e]indol-7(1H)-one (6):
Yield: 65 %, pale yellow gummy mass; IR (KBr): νmax = 1595, 1732, 2927 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): δH = 1.46 (d, J = 6.5 Hz, 3H), 2.57-2.62 (m, 1H), 2.98 (dd, J = 9.3, 16.3 Hz, 1H), 3.79 (s, 3H), 4.41-4.44 (m, 1H), 6.37 (d, J = 9.6 Hz, 1H), 6.82-6.85 (m, 2H), 7.18 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 9.6 Hz, 1H), 7.56-7.59 (m, 2H), 7.81 (d, J = 8.8 Hz, 1H) ppm. MS: m/z = 371 (M⁺). Anal. Calcd. for C₁₉H₁₇NO₅S: C, 61.44; H, 4.61; N, 3.77 %; found: C, 61.57; H, 4.64; N, 7.66 %

General procedure for the preparation of compound 7a-h:
A mixture of compound (5a-f), Cu(OAc)₂ (3 equiv) and Cs₂CO₃ (1 equiv) in acetonitrile (7 mL) was heated in a sealed tube for 7 h. After completion of the reaction, the reaction mixture was cooled and filtered through celite. The solvent was distilled off. The
resulting crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum ether-ethyl acetate (50:50) mixture as eluent to give compounds (7a-f). Similarly, other compounds 7g and 7h were prepared after 12 h.

5,5a,6-Trihydro-(1-ethyl-2-oxo-1,2-dihydroquinoline)[5',6':2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide (7a):

Yield: 82 %, colourless solid; mp 276 °C; IR (KBr): $\nu_{\text{max}} = 1592, 1663, 2923 \text{ cm}^{-1}$; 1H-NMR (CDCl$_3$, 500 MHz): $\delta_H = 1.31$ (t, $J = 7.1$ Hz, 3H), 3.08-3.16 (m, 2H), 3.49 (dd, $J = 9.2, 15.9$ Hz, 1H), 3.75 (dd, $J = 5.9, 15.7$ Hz, 1H), 4.28 (q, $J = 7.1$ Hz, 2H), 5.07-5.13 (m, 1H), 6.68 (d, $J = 9.5$ Hz, 1H), 7.20 (d, $J = 9.0$ Hz, 1H), 7.32 (d, $J = 7.5$ Hz, 1H), 7.36 (t, $J = 7.5$ Hz, 1H), 7.46 (d, $J = 9.5$ Hz, 1H), 7.48 (t, $J = 7.5$ Hz, 1H), 7.76 (d, $J = 9.1$ Hz, 1H), 7.83 (d, $J = 7.5$ Hz, 1H) ppm. 13C NMR (CDCl$_3$, 100 MHz): 12.7, 33.1, 34.5, 37.6, 61.7, 114.1, 117.3, 119.6, 122.8, 124.3, 127.6, 127.9, 129.7, 132.8, 134.2, 134.4, 136.3, 137.0, 138.5, 161.2 ppm. HRMS: m/z calcd for C$_{20}$H$_{18}$N$_2$O$_3$S [M+Na]$^+$: 389.0936; found: 389.0936.

8-Methyl-5,5a,6-trihydro-(1-ethyl-2-oxo-1,2-dihydroquinoline)[5',6':2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide (7b):

Yield: 85 %, pale yellow solid; mp 282 °C; IR (KBr): $\nu_{\text{max}} = 1457, 1592, 1659, 2973 \text{ cm}^{-1}$; 1H-NMR (CDCl$_3$, 500 MHz): $\delta_H = 1.32$ (t, $J = 7.1$ Hz, 3H), 2.38 (s, 3H), 3.05-3.12 (m, 2H), 3.48 (dd, $J = 9.2, 15.9$ Hz, 1H), 3.71 (dd, $J = 5.9, 15.8$ Hz, 1H), 4.28 (q, $J = 7.1$ Hz, 2H), 5.05-5.10 (m, 1H), 6.68 (d, $J = 9.5$ Hz, 1H), 7.12 (s, 1H), 7.16 (d, $J = 7.8$ Hz, 1H), 7.20 (d, $J = 9.2$ Hz, 1H), 7.46 (d, $J = 9.5$ Hz, 1H), 7.70 (d, $J = 7.9$ Hz, 1H), 7.75 (d, $J = 9.1$ Hz, 1H) ppm. 13C NMR (CDCl$_3$, 100 MHz): 12.7, 21.5, 33.2, 34.5, 37.6, 61.7, 114.0, 117.3, 119.6, 122.7, 124.3, 127.9, 128.2, 130.2, 134.2, 134.3, 135.6, 136.3, 137.2, 143.6, 161.2 ppm. MS: m/z calcd for C$_{21}$H$_{20}$N$_2$O$_3$S [M+Na]$^+$: 380 (M$^+$). Anal. Calcd. for C$_{21}$H$_{20}$N$_2$O$_3$S: C, 66.29; H, 5.30; N, 7.36 %; found: C, 66.08; H, 5.33; N, 7.48 %.

8-Methoxy-5,5a,6-trihydro-(1-ethyl-2-oxo-1,2-dihydroquinoline)[5',6':2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide (7c):

Yield: 74 %, colourless solid; mp 258 °C; IR (KBr): $\nu_{\text{max}} = 1593, 1655, 2980 \text{ cm}^{-1}$; 1H-NMR (CDCl$_3$, 500 MHz): $\delta_H = 1.30$ (t, $J = 7.1$ Hz, 3H), 3.05-3.12 (m, 2H), 3.47 (dd, $J = 9.3, 15.9$ Hz, 1H), 3.72 (dd, $J = 5.9, 15.8$ Hz, 1H), 3.82 (s, 3H), 4.28 (q, $J = 7.1$ Hz, 2H), 5.05-5.09 (m, 1H), 6.68 (d, $J = 9.5$ Hz, 1H), 6.81 (s, 1H), 6.82 (dd, $J = 2.4, 8.5$ Hz, 1H),
7.19 (d, \(J = 9.2 \) Hz, 1H), 7.46 (d, \(J = 9.5 \) Hz, 1H), 7.74 (d, \(J = 8.5 \) Hz, 1H), 7.75 (d, \(J = 9.1 \) Hz, 1H) ppm MS: m/z = 396 (M⁺). Anal. Calcd. for C_{21}H_{20}N_{2}O_{4}S : C, 63.62; H, 5.08; N, 7.07 %; found: C, 63.49; H, 5.13; N, 7.16 %.

5,5a,6-Trihydro-(1-methyl-2-oxo-1,2-dihydroquinoline)[5′,6′:2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide (7d):
Yield: 79 %, colourless solid; mp 284 °C; IR (KBr): \(\nu_{\text{max}} = 1592, 1651, 2925 \) cm⁻¹; \(^1\)H-NMR (CDCl₃, 500 MHz): \(\delta_H = 3.08-3.16 \) (m, 2H), 3.50 (dd, \(J = 9.5, 15.8 \) Hz, 1H), 3.67 (s, 3H), 3.75 (dd, \(J = 5.9, 15.7 \) Hz, 1H), 5.10-5.12 (m, 1H), 6.70 (d, \(J = 9.6 \) Hz, 1H), 7.18 (d, \(J = 9.0 \) Hz, 1H), 7.32 (d, \(J = 7.4 \) Hz, 1H), 7.38 (t, \(J = 7.5 \) Hz, 1H), 7.47-7.51 (m, 2H), 7.76 (d, \(J = 9.0 \) Hz, 1H), 7.82 (d, \(J = 7.8 \) Hz, 1H) ppm. \(^13\)C NMR (CDCl₃, 100 MHz): 29.8, 33.2, 34.4, 61.7, 114.2, 117.0, 119.5, 122.7, 124.3, 127.6, 127.8, 129.7, 132.8, 134.3, 134.39, 137.3, 137.4, 138.5, 161.6 ppm. MS: m/z = 352 (M⁺). Anal. Calcd. for C_{19}H_{16}N_{2}O_{3}S : C, 64.76; H, 4.58; N, 7.95 %; found: C, 64.93; H, 4.53; N, 7.88 %.

8-Methyl-5,5a,6-trihydro-(1-methyl-2-oxo-1,2-dihydroquinoline)[5′,6′:2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide (7e):
Yield: 80 %, colourless solid; mp 280 °C; IR (KBr): \(\nu_{\text{max}} = 1593, 1663, 2921 \) cm⁻¹; \(^1\)H-NMR (DMSO-d₆, 300 MHz): \(\delta_H = 2.33 \) (s, 3H), 3.05-3.14 (m, 2H), 3.54 (s, 3H), 3.58-3.70 (m, 2H), 5.00 (bs, 1H), 6.60 (d, \(J = 9.3 \) Hz, 1H), 7.24 (d, \(J = 7.5 \) Hz, 1H), 7.33 (bs,1H), 7.56-7.65 (m, 3H), 7.69 (d, \(J = 9.3 \) Hz, 1H) ppm. \(^13\)C NMR (DMSO-d₆,125 MHz): 20.9, 29.2, 32.3, 33.7, 61.6, 114.2, 116.5, 118.2, 121.9, 123.5, 127.9, 128.6, 130.5, 134.6, 134.9, 135.1, 136.4, 136.8, 143.4, 160.5 ppm. MS: m/z = 366 (M⁺). Anal. Calcd. for C_{20}H_{18}N_{2}O_{3}S : C, 65.55; H, 4.95; N, 7.64 %; found: C, 65.78; H, 4.93; N, 7.53 %.

8-Methoxy-5,5a,6-trihydro-(1-methyl-2-oxo-1,2-dihydroquinoline)[5′,6′:2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide (7f):
Yield: 68 %, colourless solid; mp 283 °C; IR (KBr): \(\nu_{\text{max}} = 1595, 1661, 2938 \) cm⁻¹; \(^1\)H-NMR (CDCl₃, 400 MHz): \(\delta_H = 3.04-3.13 \) (m, 2H), 3.48 (dd, \(J = 9.2, 16.0 \) Hz, 1H), 3.67 (s, 3H), 3.72-3.80 (m, 1H), 3.82 (s, 3H), 5.05-5.11 (m, 1H), 6.69 (d, \(J = 9.6 \) Hz, 1H), 6.82-6.84 (m, 2H), 7.18 (d, \(J = 9.2 \) Hz, 1H), 7.47 (d, \(J = 9.6 \) Hz, 1H), 7.74 (d, \(J = 8.4 \) Hz, 1H), 7.75 (d, \(J = 9.2 \) Hz, 1H) ppm. MS: m/z = 382 (M⁺). Anal. Calcd. for C_{20}H_{18}N_{2}O_{4}S : C, 62.81; H, 4.74; N, 7.33 %; found: C, 62.99; H, 4.78; N, 7.21 %.

5,5a,6-Trihydro-[1]-benzopyrano[5',6':2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide-2-one (7g):
Yield: 75 %, colourless solid; mp >290 °C; IR (KBr): νmax = 1570, 1726, 2908 cm⁻¹; ¹H-NMR (DMSO-d⁶, 300 MHz): δH = 3.04-3.12 (m, 2H), 3.34-3.67 (m, 2H), 5.03 (bs, 1H), 6.49 (d, J = 9.0 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.47-7.63 (m, 4H), 7.77 (d, J = 6.3 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H) ppm. MS: 361.95 (M+Na)+ Anal. Calcd. for C₁₈H₁₃NO₄S : C, 63.71; H, 3.86; N, 4.13 %; found: C, 63.85; H, 3.80; N, 7.09 %.

8-Methyl-5,5a,6-trihydro-[1]-benzopyrano[5',6':2,3][12H]pyrrolo[1,2-b]benzothiazine-11,11-dioxide-2-one (7h):
Yield: 78 %, colourless solid; mp 136 °C; IR (KBr): νmax = 1570, 1727, 2872 cm⁻¹; ¹H-NMR (DMSO-d⁶, 400 MHz): δH = 2.34 (s, 3H), 3.05 (dd, J = 8.8, 16.6 Hz, 1H), 3.17 (dd, J = 4.7, 16.1 Hz, 1H), 3.49 (dd, J = 4.8, 16.1 Hz, 1H), 3.59 (dd, J = 9.3, 16.6 Hz, 1H), 5.00 (bs, 1H), 6.49 (d, J = 9.5 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 7.34 (s, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.90 (d, J = 9.5 Hz, 1H) ppm. MS: m/z = 353 (M⁺). Anal. Calcd. for C₁₉H₁₅NO₄S : C, 64.58; H, 4.28; N, 3.96 %; found: C, 64.40; H, 4.33; N, 3.99 %.