Supporting Information
for DOI: 10.1055/s-0028-1088130
© Georg Thieme Verlag KG Stuttgart · New York 2009
Supporting information

A mild and efficient bisaldolization of ketones and its application towards spirocyclic 1,3–dioxanes and novel 1,3,5–trioxocanes

Nagarapu Srinivas, Vijay K. Marrapu and Kalpana Bhandari*

Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow 226001 India.

General Information:

All reagents were commercial and were used without further purification. Chromatography was carried on silica gel (60–120 mesh) and florisil (60–100). All reactions were monitored by TLC; silica gel plates with fluorescence F254 were used. Melting points were uncorrected. The 1H NMR, 2D-NMR (COSY, HMBC, HSQC, NOESY and NOE DIFF) and 13C NMR spectra were determined on a 200, 300 MHz and 50, 75 MHz, respectively, and TMS as internal standard. All shifts are given in ppm. IR spectra were recorded on in the range of 400~4000 cm⁻¹. And multiplicity (s = singlet, bs = broad singlet, bm = broad multiplet, d = dublet, dd = duble-dublets, t = triplet, m = multiple
Compounds 1a-8a was prepared according to the general procedure as described in the manuscript.

2,2-Bis-hydroxymethyl-indan-1-one (1a). Mp 83–84 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 3.11 (s, 2H, H-3), 3.47 (bs, 2H, 2 x OH), 3.71 (s, 4H, 2 x CH\(_2\)OH), 7.27 (m, 1H, ArH), 7.44 (d, \(J = 8.5\) Hz, 1H, H-4), 7.54 (t, \(J = 6.7\) Hz, 1H, ArH), 7.64 (d, \(J = 6.7\) Hz, 1H, H-7); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 33.4, 57.2, 64.2 (2C), 123.7, 126.6, 127.3, 135.3, 136.3, 154.3, 209.7; MS (ESI): m/z (%): 193 (33) [M+1]\(^+\), 232 (100) [M+39]\(^+\).

2,2-Bis-hydroxymethyl-6-methoxy-3,4-dihydro-2H-naphthalen-1-one (3a). Mp 105–106 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 2.03 (t, \(J = 6.5\) Hz, 2H, H-3), 3.05 (t, \(J = 6.6\) Hz, 2H, H-4), 3.67 (bs, 2H, 2 x OH), 3.86 (s, 3H, OCH\(_3\)), 3.73–3.95 (dd, \(J = 11.8\) Hz, 4H, 2 x CH\(_2\)OH), 7.30 (m, 1H, H-5), 7.49 (t, \(J = 7.8\) Hz, 1H, ArH), 7.99 (d, \(J = 8.7\) Hz, 1H, H-8); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 25.7, 26.8, 51.1, 55.9, 64.6 (2C), 112.8, 114.1, 125.6, 130.5, 146.9, 164.6, 202.3; MS (ESI): m/z (%): 237 (100) [M+1]\(^+\).

3,3-Bis-hydroxymethyl-chroman-4-one (4a). Mp 77–78 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 3.25 (bs, 2H, 2 x OH), 3.88–3.92 (m, 4H, 2 x CH\(_2\)OH), 4.43 (s, 2H, H-2), 7.03 (m, 2H, ArH), 7.51 (t, \(J = 7.1\) Hz, 1H, ArH), 7.84–7.87 (d, \(J = 7.8\) Hz, 1H, H-5); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 51.7, 61.6 (2C), 69.2, 117.9, 120, 121.7, 127.3, 136.6, 161.5, 196.2; MS (ESI): m/z (%): 209 (100) [M+1]\(^+\), 210 (21) [M+2]\(^+\).

4,4-Bis-hydroxymethyl-7-methyl-3,4-dihydro-2H-benzo[b]oxepine-5-one (5a). Mp 83–84 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.89 (t, \(J = 6.5\) Hz, 2H, H-3), 2.29 (s, 3H, ArCH\(_3\)), 3.22 (bs, 2H, 2 x OH), 3.74–3.96 (dd, \(J = 12.1\) Hz, 4H, 2 x CH\(_2\)OH), 4.21 (t, \(J = 6.6\) Hz, 2H, H-2), 6.86–6.89 (d, \(J = 8.8\) Hz, 1H,), 7.19–7.23 (dd, \(J = 2.2, 8.3\) Hz, 1H, ArH), 7.46 (s, 1H, H-6); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 20.4, 32.4, 58.2, 67.2 (2C), 71.6, 119.3, 126, 130.6, 131.7, 134.7, 158, 205.5; MS (ESI): m/z (%): 237.1 (100) [M+1]\(^+\), 238 (13) [M+2]\(^+\).

3-Hydroxy-2-hydroxymethyl-2-methyl-1-phenyl-propan-1-one (6a). Oil; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 1.15 (s, 3H, CH\(_3\)), 3.2 (bs, 2H, 2 x OH), 3.83–4.25 (dd, \(J = 4.7, 11.7\) Hz, 4H, 2 x CH\(_2\)OH), 7.50 (m, 3H, ArH), 7.81–7.84 (d, \(J = 7.6\) Hz, 2H, ArH); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 17.7, 54.3, 70 (2C), 127.6 (2C), 128.4 (2C), 131.9, 138.1, 209.1; MS (ESI): m/z (%): 195 (100) [M+1]\(^+\).

1-(3-Chloro-phenyl)-3-hydroxy-2-hydroxymethyl-2-methyl-propan-1-one (7a). Mp 89-90 °C; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 0.69 (s, 3H, CH\(_3\)), 3.44–3.72 (m, 6H, 2 x CH\(_2\)OH), 7.20 (m, 3H, ArH), 7.33 (s, 1H, ArH); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 15.6, 43.7, 66.6, 67.6, 126.3, 127.9, 128, 129.5, 134.2, 143.8, 212.2; IR (KBr, cm\(^{-1}\)): 3391, 2360, 1647, 1572, 1470, 1427, 1216, 1036, 762; MS (ESI): m/z (%): 229 (100) [M+1]\(^+\).
5-Chloro-2,2-bis-hydroxymethyl-3,4-dihydro-2H-naphthalen-1-one (8a). Mp 92-93 °C; 1H NMR (300 MHz, CDCl\textsubscript{3}) 2.05 (t, \textit{J} = 6.4 Hz, 2H, H-3), 3.07 (t, \textit{J} = 6.6 Hz, 2H, H-4), 3.46 (bs, 2H, 2 x OH), 3.74–3.96 (dd, \textit{J} = 12.3 Hz, 4H, 2 x CH\textsubscript{2}OH), 7.28 (t, \textit{J} = 6.5 Hz, 1H, ArH), 7.57 (d, \textit{J} = 8.9 Hz, 1H, H-6), 7.93 (d, \textit{J} = 7.8 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl\textsubscript{3}) \delta 22.8, 25.4, 50.6, 64.3 (2C), 126.2, 127.5, 133.4, 134.2, 134.5, 141, 202.1; MS (ESI): m/z (%): 241 (88) [M+1]+, 243 (70) [M+3]+.

General procedure for the synthesis of spiro 1,3–dioxane and spiro 1,3,5–trioxocane derivatives

A mixture of Bis-adol derivative (1.0 equiv), paraformaldehyde (4.0 equiv) and catalytic amount (0.05 equiv) of paratoluene sulfonic acid in Dichloromethane (2mL/100mg scale) was stirred at room temperature for 8-12 h. after completion of the reaction (monitored by TLC) the reaction mixture was filtered through sintered funnel and the filtrate was washed with 1 % aq. NaHCO\textsubscript{3} (2 x 1 mL) solution followed by distilled water (3 x 1 mL). Dried over Na\textsubscript{2}SO\textsubscript{4} and removal of the solvent under \textit{vacuo} gives the crude product is latter separated in hexane/ethylacetate (99:1) by using florisil chromatography (60-100 mesh) to afford the desired products.

Comp.no. (9); Mp 81-82 °C; 1H NMR (300 MHz, CDCl\textsubscript{3}) 3.44 (s, 2H, H-3), 3.76–4.05 (dd, \textit{J} = 10.9 Hz, 4H, H-10, H-12), 4.82 (d, \textit{J} = 6.1 Hz, 1H, H-11), 5.13 (d, \textit{J} = 6.1 Hz, 1H, H-11), 7.4 (t, \textit{J} = 7.8 Hz, 1H, H-5), 7.56 (d, \textit{J} = 7.7 Hz, 1H, H-5), 7.63 (t, \textit{J} = 7.5 Hz, 1H, H-7), 7.75 (d, \textit{J} = 7.6 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl\textsubscript{3}) \delta 38, 51.5, 72.6 (2C), 93.9, 124.2, 126.9, 127.8, 135.5, 136, 153.4, 204.5; IR (KBr, cm-1): 3020, 2361, 1703, 1216, 1160, 760, 669; MS (ESI): m/z (%): 205 (100) [M+1]+.

Comp.no. (11a); Mp 101-102 °C; 1H NMR (300 MHz, CDCl\textsubscript{3}) 2.42 (t, \textit{J} = 6.5 Hz, 2H, H-3), 3.03 (t, \textit{J} = 6.3 Hz, 2H, H-4), 3.87 (s, 3H, OCH\textsubscript{3}), 3.92–4.09 (dd, \textit{J} = 11.5 Hz, 4H, H-11, H-13), 4.75 (d, \textit{J} = 6.0 Hz, 1H, H-12), 5.07 (d, \textit{J} = 6.0 Hz, 1H, H-12), 6.71 (d, \textit{J} = 2.4 Hz, 1H, H-5), 6.84 (dd, \textit{J} = 8.8, 2.5Hz, 1H, H-7), 7.95 (d, \textit{J} = 8.7 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl\textsubscript{3}) \delta 26.4, 26.9, 45, 54.9, 70.1 (2C), 93.7, 111.8, 113, 124.8, 129.5, 145.2, 163.4, 195.9; IR (KBr, cm-1): 3317, 2358, 1703, 1222, 1201, 769; MS (ESI): m/z (%): 249 (100) [M+1]+.

Comp.no. (11b); Oil; 1H NMR (300 MHz, CDCl\textsubscript{3}) 2.24 (t, \textit{J} = 6.5 Hz, 2H, H-3), 3.0 (t, \textit{J} = 6.3 Hz, 2H, H-4), 3.8–4.19 (dd, \textit{J} = 12.0 Hz, 4H, H-11, H-14), 3.87 (s, 3H, OCH\textsubscript{3}), 4.79 (d, \textit{J} = 6.7 Hz, 2H, H-12, H-13), 4.97 (d, \textit{J} = 6.3 Hz, 2H, H-12, H-13), 6.7 (s, 1H, H-5), 6.84 (d, \textit{J} = 8.7 Hz, 1H, H-7), 8.01 (d, \textit{J} = 8.8 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl\textsubscript{3}) \delta 25.3, 27.6, 29.7, 45.6, 55.4, 70.7 (2C), 94.3, 112.4, 113.6, 125.4, 130.2, 145.8, 164, 196.6; IR (Neat, cm-1): 3027, 2367, 1709, 1217, 1161, 767; MS (ESI): m/z (%): 279(100) [M+1]+, 280 (21) [M+2]+.

Comp.no. (12a); Oil; 1H NMR (300 MHz, CDCl\textsubscript{3}) 4.06 (s, 4H, H-11, H-13), 4.71 (s, 2H, H-2), 5.11 (d, \textit{J} = 6.0 Hz, 2H, H-12), 7.03 (m, 2H, ArH), 7.53 (m, 1H, ArH), 7.84 (d, \textit{J} = 7.9 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl\textsubscript{3}) \delta 45.3, 66.5, 67.7 (2C), 69.7, 116.8, 118.2, 122, 126.7, 130.7, 136.5, 208.9; IR (KBr, cm-1): 3325, 2361, 1698, 1216, 1151, 769, 663; MS (ESI): m/z (%): 221 (100) [M+1]+, 222 (18) [M+2]
Comp no. (12b); Mp 61–62 °C; 1H NMR (300 MHz, CDCl3) δ 3.85–4.23 (dd, J = 12.3 Hz, 4H, H-11, H-14), 4.53 (s, 2H, H-2), 4.83 (d, J = 6.6 Hz, 2H, H-12, H-13), 4.93 (d, J = 6.5 Hz, 2H, H-12, H-13), 7.02 (m, 2H, ArH), 7.51 (m, 1H, ArH), 7.9 (d, J = 8.9 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl3) δ 24.8 (2C), 28.8, 29.7, 49.7, 93.2, 126.8, 127.8, 128.8, 131.5, 133.6, 143.2, 199.5; IR (Neat, cm⁻¹): 3022, 2362, 1704, 1214, 1161, 762, 668; MS (ESI): m/z (%): 251 (100) [M+1]⁺, 252 (11) [M+2]⁺.

Comp no. (13); Mp 88–89 °C; 1H NMR (200 MHz, CDCl3) δ 2.06 (t, J = 6.2 Hz, 2H, H-3), 2.31 (s, 3H, ArCH3), 3.74–4.24 (dd, J = 11.5 Hz, 4H, H-12, H-14), 4.21 (t, J = 6.3 Hz, 2H, H-2), 4.80 (s, 2H, H-13), 6.91 (d, J = 8.3 Hz, 1H, H-9), 7.23 (m, 1H, H-8), 7.44 (d, J = 1.8 Hz, 1H, H-6); 13C NMR (75 MHz, CDCl3) δ 20.4, 33.9, 51, 71.4, 72.8 (2C), 94, 119.4, 126.4, 130.3, 134.2, 132.3, 134.5, 157.6, 202; IR (KBr, cm⁻¹): 3028, 2366, 2339, 1709, 1218, 1161, 760, 679; MS (ESI): m/z (%): 249 (100) [M+1]⁺, 250 (17) [M+2]⁺.

Comp no. (14); Mp 101–102 °C; 1H NMR (300 MHz, CDCl3) δ 1.32 (s, 3H, CH3), 3.7–4.43 (dd, J = 11.5 Hz, 4H, 2x CH2O–), 4.78–4.87 (dd, J = 6Hz, 2H, –OCH2O–), 7.46 (m, 3H, ArH), 7.69 (m, 1H, ArH); 13C NMR (75 MHz, CDCl3) δ 18.8, 47.5, 73.3 (2C), 94.4, 125.5, 127.9, 128.4 (2C), 131.5, 137.8, 203.9; IR (KBr, cm⁻¹): 3020, 2361, 1698, 1215, 1164, 760, 669; MS (ESI): m/z (%): 207 (100) [M+1]⁺.

Comp no. (15); 1H NMR (300 MHz, CDCl3) δ 1.31 (s, 3H, CH3), 3.72–4.41 (dd, J = 11.2 Hz, 4H, 2x CH2O–), 4.75–4.83 (dd, J = 6Hz, 2H, –OCH2O–), 7.19–7.23 (m, 1H, ArH), 7.31 (m, 2H, ArH), 7.42 (d, J = 8.2 Hz, 1H, ArH); 13C NMR (75 MHz, CDCl3) δ 18.6, 46.8, 72.8 (2C), 94.4, 125.5, 127.9, 128.4 (2C), 131.5, 137.8, 203.9; IR (KBr, cm⁻¹): 3028, 2361, 1698, 1215, 1164, 760, 669; MS (ESI): m/z (%): 241 (100) [M+1]⁺.

Comp no. (16a); Oil; 1H NMR (300 MHz, CDCl3) δ 2.94 (t, J = 7.0 Hz, 2H, H-3), 3.59 (d, J = 6.9 Hz, 2H, H-4), 3.96–4.05 (dd, J = 11.3 Hz, 2H, H-11, H-13), 4.64 (d, J = 5.9 Hz, 2H, H-11, H-13), 5.23 (d, J = 5.9 Hz, 2H, H-12, H-13), 7.17 (d, J = 6.4 Hz, 1H, H-6), 7.31 (m, 1H, H-7), 7.71 (d, J = 8.3 Hz, 1H, H-8); 13C NMR (75 MHz, CDCl3) δ 24.7, 27.5, 45.5, 72.4, 72.9, 94.7, 126.4, 126.8, 128.9, 131.7, 133.4, 147.5, 201.3; IR (KBr, cm⁻¹): 3228, 2404, 1701, 1231, 1125, 772, 679; MS (ESI): m/z (%): 253 (89) [M+1]⁺.

Comp no. (16b); Mp 133–134 °C; 1H NMR (300 MHz, CDCl3) δ 2.24 (t, J = 6.7 Hz, 2H, H-3), 3.02 (t, J = 6.6 Hz, 2H, H-4), 3.79–4.20 (dd, J = 18.0 Hz, 4H, H-11, H-14), 4.75–4.79 (d, J = 10.0 Hz, 2H, H-12, H-13), 4.92–4.95 (d, J = 9.9 Hz, 2H, H-12, H-13), 7.22 (m, 1H, ArH), 7.44 (m, 1H, ArH), 7.98–8.02 (dd, J = 11.6, 2.01 Hz, H-8); 13C NMR (75 MHz, CDCl3) δ 25.2 (2C), 29.2, 30.11, 50.1, 70.4, 96.4, 127.2, 128.3, 129.2, 131.9, 134.1, 143.7, 199.9; IR (KBr, cm⁻¹): 3316, 2362, 1700, 1228, 1200, 766; MS (ESI): m/z (%): 283 (100) [M+1]⁺.
^1H, ^{13}C and 2D-NMR spectra’s of above compounds.

^1H of Compound 1a
13C, DEPT-135, 90 of Compound 1a
1H of Compound 2a

13C of Compound 2a
1H of Compound 3a
13C of Compound 3a

1H of Compound 4a
^{13}C of Compound 5a

^{1}H of Compound 6a
13C of Compound 6a

1H of Compound 7a
^{13}C of Compound 7a

^{1}H of Compound 8a
13C of Compound 8a

1H of compound of 9
^{13}C of compound of 9

^1H of compound of 10a
13C of compound of \textbf{10a}

1H of compound of \textbf{10b}
13C, DEPT-90, 135 of compound of 10b
1H of compound of 11a

1H of compound of 11b
13C of compound of 11b

1H of compound of 12a
^{13}C of compound of 12a

^{1}H of compound of 12b
13C of compound of 12b

NOESY of compound of 12b
NOESY expansion of compound 12b
NOE DEFF of compd. 12b
1H of compound of 13

13C of compound of 13
$^{1}\text{H}^{-1}\text{H}$ Cosy of compound of 13

HMBC of compound of 13
HSQC of compound of 13

^1^H of compound of 14
13C of compound of 14

1H of compound of 16b
^{13}C of compound of 16b