Supporting information

Effective Antimalarial Activities of α-Hydroxy Diynes Isolated from *Ongokea gore*
Joséphine Kankolongo Ntumba¹, Christian Muamba Tshiongo¹, Michel Ngoma Mifundu¹, Raphäel Robiette², Kalulu Muzele Taba¹

Affiliation
¹ Department of Chemistry, Faculty of Sciences, University of Kinshasa, Democratic Republic of Congo
² Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Belgium

Correspondence
Prof. Dr. Joséphine Kankolongo Ntumba
Department of Chemistry
Faculty of Sciences
University of Kinshasa
B.P. 190
Kinshasa IX
Democratic Republic of Congo
Phone: +243 811779393
josephine.ntumba@unikin.ac.cd
Compound 1

![Graph showing inhibition percentage vs. log C (µg/L).]
Compound 2

Linear regression gives a more precise correlation.

\[y = 25.05X + 46.888 \]

And at 50 %:

\[
50 = 25.05X + 46.888 \\
X = \frac{50 - 46.888}{25.05} = 0.124 \rightarrow C = 1.331
\]
Compound 3

The same applies to compound 3.

\[y = 18.206X + 55.335 \] And at 50%:

\[50 = 18.206X + 55.335 \]

\[X = \frac{-5.335}{18.206} = -0.293 \quad \rightarrow \quad C = 0.509 \]
Standard compound (quinine)

For quinine, a non-linear regression gave the following:

\[y = 58.5501 + 38.6526X - 8.7969X^2. \]

At 50%:

\[50 = 58.5501 + 38.6526X - 8.7969X^2 \]

\[-8.7969X^2 + 38.6526X + 8.5501 = 0 \]

\[\sqrt{\Delta} = \pm 42.366 \]

\[X_1 = 4.605 \rightarrow C_1 = 40267 \text{ (rejected value)} \]

\[X_2 = -0.211 \rightarrow C_2 = 0.615 \text{ (retained value)} \]

Fig. 1S. IC\textsubscript{50} determinations as dose-response curves as well as the mathematical method of determination of the values for respectively compounds 1, 2, and 3 and the standard compound quinine.