Supporting Information

*Terminalia ferdinandiana* Fruit and Leaf Extracts Inhibit Methicillin-Resistant *Staphylococcus aureus* Growth

Matthew J. Cheesman¹,², Alan White³, Ben Matthews⁴, Ian E. Cock³,⁵

Affiliation

1 School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Australia
2 Menzies Health Institute Queensland, Quality Use of Medicines Network, Australia
3 School of Natural Sciences, Nathan Campus, Griffith University, Australia
4 Prince of Wales Hospital, NSW Health, Sydney, Australia
5 Environmental Futures Research Institute, Nathan Campus, Griffith University, Australia

Correspondence

*Dr. I. E. Cock*
School of Natural Sciences
Nathan Campus
Griffith University
170 Kessels Rd
Nathan
Queensland 4111
Australia
Phone: +61737357637
i.cock@griffith.edu.au
<table>
<thead>
<tr>
<th>Plant part</th>
<th>Solvent</th>
<th>Extract yield (mg)</th>
<th>Extract concentration (mg/mL)</th>
<th>Total phenolics</th>
<th>Water soluble phenolics</th>
<th>Water insoluble phenolics</th>
<th>Cardiac glycosides</th>
<th>Saponins</th>
<th>Triterpenoids</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
<th>Tannins</th>
<th>Free anthraquinones</th>
<th>Combined anthraquinones</th>
<th>Antioxidant capacity (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit</td>
<td>M</td>
<td>359</td>
<td>35.9</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>−</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>483</td>
<td>48.3</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+++</td>
<td>++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>1660</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>38</td>
<td>3.8</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>CND</td>
</tr>
<tr>
<td>Leaves</td>
<td>M</td>
<td>331</td>
<td>33.1</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>471</td>
<td>47.1</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>−</td>
<td>+++</td>
<td>−</td>
<td>++</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>59</td>
<td>5.9</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>++</td>
<td>++</td>
<td>−</td>
<td>−</td>
<td>22</td>
</tr>
</tbody>
</table>

M: methanolic extract; W: aqueous extract; E: ethyl acetate extract; +++ indicates a large response; ++ indicates a moderate response; + indicates a minor response; – indicates no response in the assay. Antioxidant capacity is expressed as mg ascorbic acid equivalence per g of plant material extracted.
*T. ferdinandiana* fruit and leaf extractions (1 g) with various solvents yielded dried plant extracts ranging from 38 mg to 483 mg (fruit extracts) and 59 mg to 471 mg (leaf extracts) (Table 1S). Aqueous and methanolic extracts provided significantly greater yields of extracted material relative to the ethyl acetate extracts, which gave low to moderate yields. The dried extracts were resuspended in 10 mL of deionized water (containing 1% DMSO), resulting in the concentrations presented in 1S. Qualitative phytochemical studies (1S) showed that methanol and water extracted the widest range of phytochemicals from both the fruit and leaves. Both showed high levels of phenolics (both water soluble and insoluble phenolics) and flavonoids, as well as moderate to high levels of tannins. Saponins were also present in low to moderate levels. Triterpenes and alkaloids were also present in low levels in the methanol extract. The ethyl acetate extract also had moderate levels of phenolics, flavonoids, and triterpenes as well as low levels of saponins. Antioxidant capacity (expressed as ascorbic acid equivalents) for the *T. ferdinandiana* fruit and leaf extracts are also shown in Table 1S. The antioxidant capacity ranged from a low of 22 mg ascorbic acid equivalence per gram of dried plant material extracted (ethyl acetate leaf extract) to a high of 1660 mg ascorbic acid equivalence per gram of dried plant material extracted (aqueous fruit extract).
Fig. 1S. RP-HPLC total compound chromatograms of 2 µL injections of *T. ferdinandiana* fruit (a) methanolic, (b) aqueous, and (c) ethyl acetate extracts run in positive ionization mode.
Fig. 2S. RP-HPLC total compound chromatograms of 2 µL injections of *T. ferdinandiana* leaf (a) methanolic, (b) aqueous, and (c) ethyl acetate extracts run in positive ionization mode.
Fig. 3S. Headspace gas chromatogram of 0.5 μL injections of *T. ferdinandiana* fruit (a) methanolic, (b) aqueous, and (c) ethyl acetate extracts.
Fig. 4S. Headspace gas chromatogram of 0.5 μL injections of *T. ferdinandiana* leaf (a) methanolic, (b) aqueous, and (c) ethyl acetate extracts.