Supporting Information

Metabolism of Scoparone in Experimental Animals and Humans
Risto O. Juvonen¹, Filip Novák², Eleni Emmanouilidou³, Seppo Auriola¹, Juri Timonen¹, Aki T. Heikkinen⁴, Jenni Küblbeck¹, Moshe Finel⁵, Hannu Raunio¹

Affiliation
¹ School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
² Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
³ School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
⁴ Admescope Ltd, Oulu, Finland
⁵ Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, University of Helsinki, Finland

Correspondence

Professor Risto O. Juvonen
School of Pharmacy
Faculty of Health Sciences
University of Eastern Finland
Yliopistonranta 1C
70210 Kuopio
Finland
Phone: 358 40 728 2699
Fax: 358 17 162424
risto.juvonen@uef.fi
A. MBQP

B. Scopoletin and isoscopoletin sulfate

Fig. 1S. MS/MS spectra of peaks of scoparone metabolites MBQP (A), isoscopoletin, and scopoletin sulfate (B).
Fig. 2S. Decrease of scopoletin concentration in scopoletin 6-O-demethylation and scopoletin glucuronidation. In panels A and B, 10 µM scopoletin was incubated at 100 mM Tris-HCl pH 7.4 containing 20% NADPH regenerating system and pig liver microsomes. Blank reactions did not contain either microsomes or NADPH. In panels C and D, 10 µM scopoletin was at 100 mM Tris-HCl pH 7.4 containing 0.5 mM UDP-glucuronic acid and pig liver microsomes. Blank reactions did not contain either microsomes or UDP-glucuronic acid. Panels A and C show the scopoletin concentration during 40 min incubation and panel B and D the effect of microsomal protein to the rate of reactions at the linear phase of the incubation. Fluorescence of scopoletin was determined using excitation 405 nm and emission 460 nm and scopoletin 0–10 µM standards were used to calculate the concentration of scopoletin at every time point.