Supporting Information

Baicalin Induces Apoptotic Death of Human Chondrosarcoma Cells through Mitochondrial Dysfunction and Downregulation of the PI3K/Akt/mTOR Pathway

Minyu Zhu¹, Jinwei Ying¹, Chaowei Lin¹, Yu Wang¹, Kelun Huang¹, Yang Zhou¹, Honglin Teng¹

Affiliation

¹Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

Correspondence

Honglin Teng, PhD
Department of Spine Surgery
The First Affiliated Hospital of Wenzhou Medical University
Nanbaixiang Street
Ouhaic District
Wenzhou, 325000
China
Fig. 1S Baicalin-induced cytotoxicity was highly selective between human chondrosarcoma cells and normal chondrocytes. **A** Human chondrosarcoma cells (SW1353, CH2879) and normal chondrocytes (C28/I2) were treated with Bai for 48 h. **B** Normal chondrocytes (CHON-001) were treated with Bai, Dox, or Cyc for 48 h. Cell viability, which was detected by MTT, is presented as the mean ± SD from three separate experiments. The IC₅₀ of each cell line was determined from the dose-response curves by using GraphPad Prism software. Con: control; Bai: baicalin; Cyc: cyclophosphamide; Dox: doxorubicin.
Fig 2S Baicalin-induced caspase activation in SW1353 cells. SW1353 cells were incubated with baicalin (5 and 10 µM) for 48 h. A The levels of activate form of caspase-3 and caspase-9 were examined by Western blot analysis. B The expression of the bands was semiquantitatively analysed by using image analysis software. The results are representative of three independent experiments; **p < 0.01 compared to the control (Con).
Fig. 3S Baicalin blocked the PI3K/Akt/mTOR signalling pathway in SW1353 cells. A SW1353 cells were treated with baicalin for 6 h, and the whole cell lysates were analysed by immunoblotting. B Bars represent the densitometric intensity of the bands, which is expressed by using image analysis software. The results are representative of three independent experiments; *p < 0.05, **p < 0.01 compared to the control (Con).
Fig. 4S Baicalin blocked downstream target (S6K and 4E-BP1) activation of mTOR in SW1353 cells. **A** SW1353 cells were treated with baicalin for 6 h, and the whole cell lysates were analysed by immunoblotting. **B** Bars represent the densitometric intensity of the bands, which is expressed by using image analysis software. The results are representative of three independent experiments; **p < 0.01 compared to the control (Con).
Fig. 5S Baicalin reduced the tumour weight of nude mice bearing SW1353 cell xenografts. The mice were treated with physiological saline, baicalin (50 mg/kg), LY294002 (PI3K phosphorylation inhibitor, 10 mg/kg), and SC79 (Akt activator, 10 mg/kg) for 21 days. The results are expressed as the mean ± SD; n = 5. **P < 0.01 compared to the control; #p < 0.05, ##p < 0.01 compared to the mice treated with baicalin only.
The PI3K/Akt pathway was involved in baicalin-induced cytotoxicity and antitumour activity in chondrosarcoma. A-C SW1353 cells were treated with baicalin (alone or in combination with 5 µM SC79/ LY294002), SC79, and LY294002 with the same concentration gradient (0, 1, 5, 10, 20, 40, 60, 80, or 100 µM) for 48 h. The IC₅₀ values of baicalin are shown. Cell viability, which was detected by MTT, is presented as the mean ± SD from three separate experiments. D-F Nude mice bearing SW1353 cell xenografts were treated with physiological saline for control, baicalin (50 mg/kg), baicalin (50 mg/kg) + LY294002 (10 mg/kg), baicalin (50 mg/kg) + SC79 (10 mg/kg), LY294002 (10 mg/kg), or SC79 (10 mg/kg) for 21 days. The tumour weights are recorded. The results are expressed as the mean ± SD; n = 5. *P < 0.05, **p < 0.01 compared to the control; *p < 0.05, **p < 0.01 compared to the mice treated with baicalin only.