Supporting Information

New Cytotoxic Cycloartane Triterpenes from the Aerial Parts of *Actaea heracleifolia* (syn. *Cimicifuga heracleifolia*)
Qiang-Qiang Shi¹,²,³,* Wei-Hua Wang¹,²,³,* Jing Lu¹,²,³, Da-Shan Li¹,³, Lin Zhou¹,³, Ming-Hua Qiu¹,³

Affiliation
¹ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
² University of the Chinese Academy of Science, Beijing, China
³ Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, China

Correspondence

Prof. Ming-Hua Qiu
State Key Laboratory of Phytochemistry and Plant Resources in West China
Kunming Institute of Botany
Chinese Academy of Science
132 Lanhei Road
Kunming 650201
China
Phone: +86 87 16 52 23 325
Fax: +86 87 16 52 23 327
mhchiu@mail.kib.ac.cn

* These authors contributed equally to the work reported in this article.
Contents

Fig. 1S–6S. NMR spectrum of compound 1 in Pyridine-d_5.

Fig. 7S. HRESIMS spectrum of compound 1.

Fig. 8S. IR spectrum of compound 1.

Fig. 9S. UV spectrum of compound 1.

Fig. 10S. The molecular modeling of compound 1.

Fig. 11S–16S. NMR spectrum of compound 5 in Pyridine-d_5.

Fig. 17S. HRESIMS spectrum of compound 5.

Fig. 18S. IR spectrum of compound 5.

Fig. 19S. UV spectrum of compound 5.

Fig. 20S–25S. NMR spectrum of compound 2 in Pyridine-d_5.

Fig. 26S. HRESIMS spectrum of compound 2.

Fig. 27S. IR spectrum of compound 2.

Fig. 28S. UV spectrum of compound 2.

Fig. 29S–34S. NMR spectrum of compound 3 in Pyridine-d_5.

Fig. 35S. HRESIMS spectrum of compound 3.

Fig. 36S. IR spectrum of compound 3.

Fig. 37S. UV spectrum of compound 3.

Fig. 38S–43S. NMR spectrum of compound 4 in Pyridine-d_5.

Fig. 44S. HRESIMS spectrum of compound 4.

Fig. 45S. IR spectrum of compound 4.

Fig. 46S. UV spectrum of compound 4.

Fig. 47S. The dose-response curves of DDP and compounds 3 and 4.
Fig. 1S. 1H NMR spectrum of compound 1 in Pyridine-d_5 (600 MHz).

Fig. 2S. 13C NMR spectrum of compound 1 in Pyridine-d_5 (150 MHz).
Fig. 3S. HSQC spectrum of compound 1 in Pyridine-d_5.

Fig. 4S. 1H–1H COSY spectrum of compound 1 in Pyridine-d_5.

© Georg Thieme Verlag KG · 10.1055/a-0733-7229 · Planta Med · Shi QQ et al.
Fig. 5S. HMBC spectrum of compound 1 in Pyridine-\textit{d}5.

Fig. 6S. ROESY spectrum of compound 1 in Pyridine-\textit{d}5.
Fig. 7S. HRESIMS spectrum of compound 1.
Fig. 8S. IR spectrum of compound 1.

Fig. 9S. UV spectrum of compound 1.
Fig. 10S. The molecular modeling of compound 1.
Fig. 11S. 1H NMR spectrum of compound 5 in Pyridine-d_5 (600 MHz).

Fig. 12S. 13C NMR spectrum of compound 5 in Pyridine-d_5 (150 MHz).
Fig. 13S. HSQC spectrum of compound 5 in Pyridine-d_5.

Fig. 14S. 1H–1H COSY spectrum of compound 5 in Pyridine-d_5.
Fig. 15S. HMBC spectrum of compound 5 in Pyridine-d_5.

Fig. 16S. ROESY spectrum of compound 5 in Pyridine-d_5.

© Georg Thieme Verlag KG · 10.1055/a-0733-7229 · Planta Med · Shi QQ et al.
Fig. 17S. HRESIMS spectrum of compound 5.

Qualitative Analysis Report

<table>
<thead>
<tr>
<th>Data Filename</th>
<th>140307ESIA3.d</th>
<th>Sample Name</th>
<th>kdr24a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>Sample</td>
<td>Position</td>
<td>KB</td>
</tr>
<tr>
<td>Instrument Name</td>
<td>Agilent G6230 TOF MS</td>
<td>User Name</td>
<td>KB</td>
</tr>
<tr>
<td>IRM Calibration Status</td>
<td>ESI,n</td>
<td>Acquired Time</td>
<td>3/6/2014 10:03:38 AM</td>
</tr>
<tr>
<td>Comment</td>
<td>Info.</td>
<td>DA Method</td>
<td>ESI,n</td>
</tr>
<tr>
<td>Sample Group</td>
<td>Info.</td>
<td>Version</td>
<td>Q-TOP 6.0.5.01 (85125.1)</td>
</tr>
</tbody>
</table>

User Spectra

<table>
<thead>
<tr>
<th>Fragmentor Voltage</th>
<th>Collision Energy</th>
<th>Ionization Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>x10^5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peak List

<table>
<thead>
<tr>
<th>m/z</th>
<th>Int</th>
<th>Formula</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>525.3194</td>
<td>1</td>
<td>C30H46NaO6</td>
<td>H+</td>
</tr>
</tbody>
</table>

Formula Calculator Element Limits

<table>
<thead>
<tr>
<th>Element</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Na</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Formula Calculator Results

<table>
<thead>
<tr>
<th>Formula</th>
<th>Calculated Mass</th>
<th>Measured Mass</th>
<th>Diff. (ppm)</th>
<th>DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30H46NaO6</td>
<td>525.3192</td>
<td>525.3194</td>
<td>-0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

--- End Of Report ---

© Georg Thieme Verlag KG · 10.1055/a-0733-7229 · Planta Med · Shi QQ et al.
Fig. 18S. IR spectrum of compound 5.

Fig. 19S. UV spectrum of compound 5.
Fig. 20S. 1H NMR spectrum of compound 2 in Pyridine-d_5 (600 MHz).

Fig. 21S. 13C NMR spectrum of compound 2 in Pyridine-d_5 (150 MHz).
Fig. 22S. HSQC spectrum of compound 2 in Pyridine-d_5.

Fig. 23S. 1H--1H COSY spectrum of compound 2 in Pyridine-d_5.
Fig. 24S. HMBC spectrum of compound 2 in Pyridine-d_5.

Fig. 25S. ROESY spectrum of compound 2 in Pyridine-d_5.

© Georg Thieme Verlag KG · 10.1055/a-0733-7229 · Planta Med · Shi QQ et al.
Fig. 26S. HRESIMS spectrum of compound 2.
Fig. 27S. IR spectrum of compound 2.

Fig. 28S. UV spectrum of compound 2.
Fig. 29S. 1H NMR spectrum of compound 3 in Pyridine-d_5 (600 MHz).

Fig. 30S. 13C NMR spectrum of compound 3 in Pyridine-d_5 (150 MHz).
Fig. 31S. HSQC spectrum of compound 3 in Pyridine-d_5.

Fig. 32S. 1H–1H COSY spectrum of compound 3 in Pyridine-d_5.
Fig. 33S. HMBC spectrum of compound 3 in Pyridine-d_5.

Fig. 34S. ROESY spectrum of compound 3 in Pyridine-d_5.
Fig. 3S. HRESIMS spectrum of compound 3.

Qualitative Analysis Report

Data Filename: 141117ESI4.d
Sample Name: kcf48
Sample Type: Sample
Instrument Name: Agilent 6520 TOF MS
Acq Method: ESI.m
DRM Calibration Status: 99.9999
eq 100
Acquired Time: 11/17/2014 10:24:57 AM
DA Method: demo.m
Comment: Info.

User Spectra

Fragmentor Voltage: 200
Collision Energy: 0
Ionization Mode: ESI

+ Scan (1.325 min) 141117ESI4.d

Peak List

m/z 1.325 min 141117ESI4.d
802.898 1 49.8525.31

Formulator Calculator Element Limits

Element Min Max
C 0 200
H 0 400
O 0 15
Na 1 1

Formulator Calculator Results

Formula Calculated Mass Mz Diff. (mDa) Diff. (ppm) DBE
C21H16N6 O7 553.3141 553.3138 0.3 0.6 0.5

--- End Of Report ---
Fig. 36S. IR spectrum of compound 3.

Fig. 37S. UV spectrum of compound 3.
Fig. 38S. 1H NMR spectrum of compound 4 in Pyridine-d_5 (600 MHz).

Fig. 39S. 13C NMR spectrum of compound 4 in Pyridine-d_5 (150 MHz).
Fig. 40S. HSQC spectrum of compound 4 in Pyridine-d_5.

Fig. 41S. 1H–1H COSY spectrum of compound 4 in Pyridine-d_5.
Fig. 42S. HMBC spectrum of compound 4 in Pyridine-\textit{d}_5.

Fig. 43S. ROESY spectrum of compound 4 in Pyridine-\textit{d}_5.
Fig. 44S. HRESIMS spectrum of compound 4.
Fig. 45S. IR spectrum of compound 4.

Fig. 46S. UV spectrum of compound 4.
Fig. 47S. The dose-response curves of DDP and compounds 3 and 4.