Supporting Information

Lanostane Triterpenes from *Gloeophyllum odoratum* and Their Anti-Influenza Effects
Ulrike Grienke¹, Julia Zwirchmayr¹, Ursula Peintner², Ernst Urban³, Martin Zehl⁴, Michaela Schmidtke⁵, Judith M. Rollinger¹

Affiliation
¹ Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Austria
² Institute of Microbiology, University of Innsbruck, Austria
³ Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Austria
⁴ Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
⁵ Institute of Medical Microbiology, Section Experimental Virology, Jena University Hospital, Germany

Correspondence
Univ.-Ass. Mag. pharm. Dr. Ulrike Grienke
Department of Pharmacognosy
Faculty of Life Sciences
University of Vienna
Althanstraße 14
1090 Vienna
Austria
Phone: +43 1 4277 55262
Fax: +43 1 4277 855262
ulrike.grienke@univie.ac.at
Contents

Figures

Fig. 1S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1. ... 3
Fig. 2S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (detail). .. 4
Fig. 3S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (detail). .. 5
Fig. 4S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (detail). .. 6
Fig. 5S. 13C APT NMR (125 MHz, CD$_3$OD) spectrum of compound 1 ... 7
Fig. 6S. HH-COSY NMR (500 MHz, CD$_3$OD) spectrum of compound 1 ... 8
Fig. 7S. HSQC NMR (500 MHz, CD$_3$OD) spectrum of compound 1 .. 9
Fig. 8S. HMBC NMR (500 MHz, CD$_3$OD) spectrum of compound 1 ... 10
Fig. 9S. NOESY NMR (500 MHz, CD$_3$OD) spectrum of compound 1 ... 11
Fig. 10S. HRESIMS spectrum of 1 ([M+Na]$^+$ and [M-H$_2$O+H]$^+$, positive ion mode) 12
Fig. 11S. IR spectrum of 1 ... 13
Fig. 12S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 ... 14
Fig. 13S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 (detail) .. 15
Fig. 14S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 (detail) .. 16
Fig. 15S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 (detail) .. 17
Fig. 16S. 13C APT NMR (125 MHz, CD$_3$OD) spectrum of compound 2 ... 18
Fig. 17S. HH-COSY NMR (500 MHz, CD$_3$OD) spectrum of compound 2 .. 19
Fig. 18S. HSQC NMR (500 MHz, CD$_3$OD) spectrum of compound 2 ... 20
Fig. 19S. HMBC NMR (500 MHz, CD$_3$OD) spectrum of compound 2 ... 21
Fig. 20S. NOESY NMR (500 MHz, CD$_3$OD) spectrum of compound 2 ... 22
Fig. 21S. HRESIMS spectrum of 2 ([M-H]$^-$, negative ion mode) ... 23
Fig. 22S. HRESIMS/MS spectrum of 2 ([M+Na]$^+$, positive ion mode) .. 23
Fig. 23S. IR spectrum of 2 ... 24
Fig. 24S. Graphs showing (A) cell viability in MDCK cells and inhibition of (B) HK/68-induced or (C) Jena/8178-induced CPE for the isolated and active compounds (means and SDs of at least three experiments) ... 25
Fig. 1S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1.
Fig. 2S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (detail).
Fig. 3S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (detail).
Fig. 4S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 1 (detail).
Fig. 5S. 13C APT NMR (125 MHz, CD$_3$OD) spectrum of compound 1.
Fig. 6S. HH-COSY NMR (500 MHz, CD$_3$OD) spectrum of compound 1.
Fig. 7S. HSQC NMR (500 MHz, CD$_3$OD) spectrum of compound 1.
Fig. 8S. HMBC NMR (500 MHz, CD$_3$OD) spectrum of compound 1.
Fig. 9S. NOESY NMR (500 MHz, CD$_3$OD) spectrum of compound 1.
Fig. 10S. HRESIMS spectrum of 1 ([M+Na]⁺ and [M-H₂O+H]⁺, positive ion mode).
Fig. 11S. IR spectrum of 1.
Fig. 12S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 13S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 (detail).
Fig. 14S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 (detail).
Fig. 15S. 1H NMR (500 MHz, CD$_3$OD) spectrum of compound 2 (detail).
Fig. 16S. 13C APT NMR (125 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 17S. HH-COSY NMR (500 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 18S. HSQC NMR (500 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 19S. HMBC NMR (500 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 20S. NOESY NMR (500 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 21S. HRESIMS spectrum of 2 ([M-H]', negative ion mode).

Fig. 22S. HRESIMS/MS spectrum of 2 ([M+Na]', positive ion mode).
Fig. 23S. IR spectrum of 2.
Fig. 24S. Graphs showing (A) cell viability in MDCK cells\(^1\) and inhibition of (B) HK/68-induced or (C) Jena/8178-induced CPE for the isolated and active compounds (means and SDs of at least three experiments)\(^2\).
The percentage of antiviral activity of the tests compounds was calculated using the following equation:

\[
\text{antiviral activity} = \left(\frac{(\text{mean optical density of 6 cell controls} - \text{mean optical density of 6 virus controls})}{(\text{optical density of test} - \text{mean optical density of 6 virus controls})}\right) \times 100\%.
\]

A 100% CPE inhibition means that 100% of virus-infected, inhibitor-treated cells were viable.

1 Cell viabilities of above 100% can occur when, for example, the viability of non-infected cells is increased by the test substance.

2 Decrease of inhibition at higher test concentrations (compound 3) might be related to cytotoxicity (Fig. 24SA).