Supporting Information

Application of GC/Q-Tof Combined with Advanced Data Mining and Chemometric Tools in the Characterization and Quality Control of Bay Leaves

Mei Wang¹, Vijayasankar Raman¹, Jianping Zhao¹, Bharathi Avula¹, Yan-Hong Wang¹, Philip L. Wylie², Ikhlas A. Khan¹,³

Affiliations

¹National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA

²Agilent Technologies, Wilmington, DE, USA

³Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
Correspondence

Dr. Ikhlas A. Khan

National Center for Natural Products Research
School of Pharmacy
University of Mississippi
3011 Thad Cochran Research Center
Post Box 1848
University, MS 38677
USA

Phone: +1 662 915 7821
Fax: +1 662 915 7062

ikhan@olemiss.edu
Fig. S1-1 Chromatogram of *Laurus nobilis*.
Fig. S1-2 PCDL standard spectrum for 3-carene.

Fig. S1-3 Spectrum for peak 1 in the sample (identified as 3-carene).
Fig. S1-4 PCDL standard spectrum for sabinene.

Fig. S1-5 Spectrum for peak 2 in the sample (identified as sabinene).
Fig. S1-6 PCDL standard spectrum for eucalyptol.

Fig. S1-7 Spectrum for peak 3 in the sample (identified as eucalyptol).
Fig. S1-8 PCDL standard spectrum for α-terpineol.

Fig. S1-9 Spectrum for peak 4 in the sample (identified as α-terpineol).
Fig. S1-10 PCDL standard spectrum for methyl eugenol.

Fig. S1-11 Spectrum for peak 5 in the sample (identified as methyl eugenol).
Fig. S2-1 Chromatogram of *Cinnamomum tamala.*
Fig. S2-2 PCDL standard spectrum for \(p \)-cymene.

Fig. S2-3 Spectrum for peak 6 in the sample (identified as \(p \)-cymene).
Fig. S2-3 PCDL standard spectrum for eucalyptol.

Fig. S2-4 Spectrum for peak 7 in the sample (identified as eucalyptol).
Fig. S2-5 PCDL standard spectrum for linalool.

Fig. S2-6 Spectrum for peak 8 in the sample (identified as linalool).
Fig. S2-7 PCDL standard spectrum for cinnamaldehyde.

Fig. S2-8 Spectrum for peak 9 in the sample (identified as cinnamaldehyde).
Fig. S3-1 Chromatogram of *Umbellularia californica* (n-hexane extracts).
Fig. S3-2 PCDL standard spectrum for β-pinene.

Fig. S3-3 Spectrum for peak 10 in the sample (identified as β-pinene).
Fig. S3-4 PCDL standard spectrum for \(p \)-cymene.

Fig. S3-5 Spectrum for peak 11 in the sample (identified as \(p \)-cymene).
Fig. S3-6 PCDL standard spectrum for eucalyptol.

Fig. S3-7 Spectrum for peak 12 in the sample (identified as eucalyptol).
Fig. S3-8 PCDL standard spectrum for umbellulone.

Fig. S3-9 Spectrum for peak 13 in the sample (identified as umbellulone).
Fig. S3-10 PCDL standard spectrum for terpinen-4-ol.

Fig. S3-11 Spectrum for peak 14 in the sample (identified as terpinen-4-ol).
Fig. S3-12 PCDL standard spectrum for α-terpineol.

Fig. S3-13 Spectrum for peak 15 in the sample (identified as α-terpineol).
Fig. S3-14 PCDL standard spectrum for thymol.

Fig. S3-15 Spectrum for peak 16 in the sample (identified as thymol).
Fig. S4-1 Chromatogram of *Pimenta racemosa* (*n*-hexane extracts).
Fig. S4-2 PCDL standard spectrum for linalool.

Fig. S4-3 Spectrum for peak 17 in the sample (identified as linalool).
Fig. S4-4 PCDL standard spectrum for β-caryophyllene.

Fig. S4-5 Spectrum for peak 18 in the sample (identified as β-caryophyllene).