Supporting Information

Potential Anti-inflammatory Sesquiterpene Lactones from

Eupatorium lindleyanum

Fang Wang1,2*, Huanhuan Zhong1*, Shiqi Fang1, Yunfeng Zheng1,3, Cunyu Li1,3, Guoping Peng1,3, Xinchun Shen2

*These authors contributed equally to this work.

Affiliations

1School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China

2College of food science and Engineering, Nanjing University of Finance and Economics, Nanjing, P. R. China

3Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, P. R. China

Correspondence

Associate Professor Yun-Feng Zheng

Pharmacy College

Fig. 1S 13C NMR spectrum of compound 1 (100 MHz, CDCl$_3$).
Fig. 2S DEPT (C90) spectrum of compound 1 (100 MHz, CDCl₃).

Fig. 3S DEPT (C135) spectrum of compound 1 (100 MHz, CDCl₃).
Fig. 4S 1H NMR spectrum of compound 1 (400 MHz, CDCl$_3$).
Fig. 5S H-H COSY spectrum of compound 1 (400 MHz, CDCl₃).

Fig. 6S HMBC spectrum of compound 1 (400, 100 MHz, CDCl₃).
Fig. 7S HSQC spectrum of compound 1 (400, 100 MHz, CDCl₃).
Fig. 8S NOESY spectrum of compound 1 (500 MHz, CDCl₃).

Fig. 9S HRESIMS spectrum of compound 1.
Fig. 10S 13C NMR spectrum of compound 2 (100 MHz, CDCl$_3$).

Fig. 11S DEPT (C90) spectrum of compound 2 (100 MHz, CDCl$_3$).
Fig. 12 DEPT (C135) spectrum of compound 2 (100 MHz, CDCl₃).

Fig. 13 ¹H NMR spectrum of compound 2 (400 MHz, CDCl₃).
Fig. 14S: H-H COSY spectrum of compound 2 (400 MHz, CDCl3).
Fig. 15S HMBC spectrum of compound 2 (400, 100 MHz, CDCl₃).
Fig. 16S HSQC spectrum of compound 2 (400, 100 MHz, CDCl₃).
Fig. 17S NOESY spectrum of compound 2 (500 MHz, CDCl3).

Fig. 18S HRESIMS spectrum of compound 2.