Supporting Information

Bioassay-Guided Isolation of Iridoids and Phenylpropanoids from Aerial Parts of *Lamium album* and Their Anti-inflammatory Activity in Human Neutrophils

Monika E. Czerwińska, Anita Świerczewska, Marta Woźniak, Anna K. Kiss

Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding contribution to pharmacognosy research.

Affiliation

Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland

Correspondence

Dr. Monika Czerwińska

Department of Pharmacognosy and Molecular Basis of Phytotherapy

Medical University of Warsaw

Banacha 1

02-097 Warsaw

Poland
Fig. 1S The draft of isolation of compounds from the aqueous-methanolic extract from the aerial parts of *L. album*. Preparative HPLC conditions: Zorbax C18; mobile phase: 0.1%
HCOOH in water (A) and 0.1% HCOOH in acetonitrile (B); elution: 0% B – 40% B (0-60 min), 40% B – 50% B (60-65 min).
The structure of compound 3 identified as caryoptoside.

1H NMR spectrum of compound 3 (300 MHz, CD$_3$OD) δ 7.37 (1H, s, H-3), 5.58 (1H, d, $J = 2.0$ Hz, H-1), 4.63 (2H, d, $J = 7.9$ Hz, H-1'), 3.89 (1H, dd, $J = 11.9, 1.7$ Hz, CH$_2$-6'), 3.66 (1H, m, CH$_2$-6'), 3.36 (1H, t, H-3'), 3.27 (1H, d, $J = 8.5$ Hz, H-5'), 3.25 (1H, m, H-4'), 3.18 (1H, d, $J = 8.0$ Hz, H-2'), 2.58 (1H, d, $J = 10.5$ Hz, H-9), 2.22 (1H, m, $J = 14.4, 9.4, 3.0$ Hz, CH$_2$-6), 1.65 (1H, dt, $J = 14.4, 5.7$ Hz, CH$_2$-6), 1.19 (3H, s, CH$_3$-10).

13C NMR spectrum of compound 3 (75 MHz, CD$_3$OD) δ 169.17 (C-11), 151.51 (C-3), 114.22 (C-4), 99.80 (C-1'), 95.12 (C-1), 79.92 (C-8), 79.06 (C-7), 78.32 (C-5'), 77.99 (C-3'), 74.65 (C-2'), 71.64 (C-4'), 62.86 (CH$_2$-6'), 51.64 (C-9, -OCH$_3$), 38.77 (C-6), 27.61 (C-5), 21.88 (-OCH$_3$).

The structure of compound 11 identified as caffeic acid.

1H NMR spectrum of compound 11 (300 MHz, CD$_3$OD) δ 7.53 (1H, d, $J = 15.9$ Hz, H-7), 7.03 (1H, d, $J = 2.0$ Hz, H-2), 6.93 (1H, dd, $J = 8.2, 2.0$ Hz, H-6), 6.78 (1H, d, $J = 8.2$ Hz, H-5), 6.22 (1H, d, $J = 15.9$ Hz, H-8). Compound 11 was identified by comparing the above spectral data with those in the literature [1].
The structure of compound 17 identified as lamiuside A (lamalboside, 2-(3,4-dihydroxyphenyl)ethyl-O-β-D-galactopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→3)-(4-O-trans-cafeoyl)-β-D-glucopyranoside).

\(^1\)H NMR spectrum of compound 17 (300 MHz, CD\(_3\)OD) \(\delta\) 7.60 (1H, d, \(J = 15.9\) Hz, H-7'), 7.06 (1H, d, \(J = 1.8\) Hz, H-2'), 6.96 (1H, dd, \(J = 8.2\) Hz, H-6'), 6.78 (1H, d, \(J = 8.2\) Hz, H-5'), 6.71 (1H, d, \(J = 1.8\) Hz, H-2), 6.68 (1H, d, \(J = 8.0\) Hz, H-5), 6.57 (1H, dd, H-6), 6.27 (1H, d, \(J = 15.9\) Hz, H-8'), 5.57 (1H, s, H-1''), 4.93 (1H, t, \(J = 9.2\) Hz, H-4''), 4.36 (2H, t, \(J = 7.6\) Hz, H-1''', H-1''), 4.04 (1H, m, Hb-8), 3.75 (1H, m, Ha-8), 2.79 (2H, t, \(J = 7.3\) Hz, H-7), 1.05 (3H, d, \(J = 6.1\) Hz, H-6''). Compound 17 was identified by comparing the above spectral data with those in the literature [2,3].

The structure of compound 21 identified as 6''-O-β-D-glucopyranosylmartynoside (trans-lamiuside E, 2-(3-hydroxy-4-methoxyphenyl)ethyl-O-α-L-rhamnopyranosyl-(1→3)-(4-O-trans-cafeoyl)-β-D-glucopyranosyl-(1→6)-(4-O-trans-feruloyl)-β-D-glucopyranoside).

\(^1\)H NMR spectrum of compound 21 (300 MHz, CD\(_3\)OD) \(\delta\) 7.89 (1H, s, H-2'), 7.67 (1H, d, \(J = 15.9\) Hz, H-7'), 7.20 (1H, s, H-6'), 7.09 (1H, d, \(J = 8.3\) Hz, H-5'), 6.82 (1H, dd, \(J = 8.1, 5.2\) Hz, H-5), 6.73 (1H, d, H-2), 6.69 (1H, s, H-6), 6.38 (1H, d, \(J = 15.9\) Hz, H-8'), 5.19 (1H, br s, H-1''), 4.40 (1H, d, \(J = 7.9\) Hz, H-1''), 4.30 (1H, d, \(J = 7.6\) Hz, H-1'''), 3.89 (3H, s, CH\(_3\)O-3'), 3.82 (3H, s, CH\(_3\)O-4'), 2.83 (1H, br t, \(J = 7.2\) Hz, H-7), 1.09 (3H, d, \(J = 6.1\) Hz, H-6''). Compound 21 was identified by comparing the above spectral data with those in the literature [2].
The structure of compound 23 identified as lamiuside B (2-(3,4-dihydroxyphenyl)ethyl-O-β-D-galactopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→3)-(4-O-trans-feruoyl)-β-D-glucopyranoside).

\[\text{Fig. 6S} \]

\[\text{Fig. 7S} \]

1H NMR spectrum of compound 23 (300 MHz, CD\textsubscript{3}OD) \(\delta \) 7.66 (1H, d, \(J = 15.9 \) Hz, H-7'), 7.20 (1H, s, H-2'), 7.09 (1H, d, \(J = 10.0 \) Hz, H-6'), 6.82 (1H, d, \(J = 8.2 \) Hz, H-5'), 6.71 (1H, d, \(J = 1.9 \) Hz, H-2), 6.68 (1H, d, \(J = 8.0 \) Hz, H-5), 6.57 (1H, dd, \(J = 8.1, 1.9 \) Hz, H-6), 6.38 (1H, d, \(J = 15.9 \) Hz, H-8'), 5.58 (1H, s, H-1''), 4.93 (1H, t, \(J = 9.3 \) Hz, H-4''), 4.37 (2H, t, \(J = 7.5 \) Hz, H-1'', H-1'''), 4.03 (1H, dd, \(J = 16.1, 8.5 \) Hz, H-8), 3.89 (3H, s, CH\textsubscript{3}O -3'), 3.75 (1H, m, Ha-8), 2.79 (1H, t, \(J = 7.2 \) Hz, H-7), 1.06 (3H, d, \(J = 6.1 \) Hz, H-6''). Compound 23 was identified by comparing the above spectral data with those in the literature [2].

1H NMR spectrum of compound 28 (300 MHz, DMSO) \(\delta \) 12.56 (1H, s, OH on C-5), 10.83 (1H, br s, OH on C-7), 10.14 (1H, s, br s, OH on C-4'), 10.00 (1H, s, br s, OH on C-4''), 7.98 (2H, d, \(J = 8.7 \) Hz, H-2', 6'), 7.37 (1H, d, \(J = 4.1 \) Hz, H-7''), 7.33 (2H, d, \(J = 11.6 \) Hz, H-2'', 6''), 6.85 (2H, d, \(J = 8.8 \) Hz, H-3',5'), 6.78 (2H, d, \(J = 8.5 \) Hz, H-3'',5''), 6.38 (1H, d, \(J = 1.6 \) Hz, H-8), 6.14 (1H, d, \(J = 1.7 \) Hz, H-6), 6.10 (1H, d, \(J = 16.0 \) Hz, H-8''), 5.44 (1H, d, \(J = 6.4 \) Hz, H-1''), 5.22 (1H, d, \(J = 5.4 \) Hz, sugar OH), 5.16 (1H, d, \(J = 4.1 \) Hz, H-1''), 4.26 (1H, d, \(J = 10.7 \) Hz, Ha-6''), 4.02 (1H, dd, \(J = 11.9, 6.3 \) Hz, Hb-6''), 3.38-3.20 (m, H-2'', 3'', 5''). Compound 28 was identified by comparing the above spectral data with those in the literature [3].
The structure of compound 29 identified as lamiumide C.

1H NMR spectrum of compound 29 (300 MHz, CD$_3$OD) δ 7.56 (1H, d, $J = 15.9$ Hz, H-7'), 7.04 (1H, d, $J = 1.8$ Hz, H-2'), 6.89 (1H, dd, $J = 8.2$, 1.9 Hz, H-6'), 6.77 (1H, d, $J = 8.2$ Hz, H-5'), 6.68 (1H, d, $J = 1.9$ Hz, H-2), 6.64 (1H, d, $J = 8.1$ Hz, H-5), 6.54 (1H, dd, $J = 8.1$, 1.9 Hz, H-6), 6.29 (1H, d, $J = 15.9$ Hz, H-8'), 5.57 (1H, s, H-1''), 4.49 (1H, dd, $J = 11.9$, 1.9 Hz, Hb-6'), 4.39 (1H, d, $J = 7.6$ Hz, H-1'''), 4.34 (1H, d, $J = 8.0$ Hz, H-1''), 2.78 (1H, t, $J = 7.4$ Hz, H-7), 1.23 (3H, d, $J = 6.2$ Hz, H-6''). Compound 29 was identified by comparing the above spectral data with those in the literature [2].

References