Supporting Information

Diterpenoid Alkaloids from *Delphinium ajacis* and Their Anti-RSV Activities

Li Yang¹, Yu-Bo Zhang¹, Ling Zhuang¹, Tao Li², Neng-Hua Chen¹, Zhong-Nan Wu¹, Pan Li¹, Yao-Lan Li¹, Guo-Cai Wang¹

Affiliations

¹Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, P. R. China
²School of Biomedical Sciences, The University of Hong Kong, Hong Kong

Correspondence

Prof. Dr. Yao-Lan Li
Institute of Traditional Chinese Medicine and Natural Products
College of Pharmacy
Jinan University
601 West Huangpu Avenue
510632 Guangzhou
P. R. China
Phone: + 862085221728
Fax: + 862085221559
tliyl@jnu.edu.cn

Dr. Guo-Cai Wang
Institute of Traditional Chinese Medicine and Natural Products
College of Pharmacy
Jinan University
601 West Huangpu Avenue
510632 Guangzhou
P. R. China
Phone: + 862085223553
Fax: + 862085221559
twangguocai@jnu.edu.cn
Contents of the Supporting Information

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction and isolation</td>
<td>1</td>
</tr>
<tr>
<td>Fig. 1S HR-ESI-MS of 1.</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 2S UV spectrum of 1.</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 3S IR spectrum of 1.</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 4S 1H NMR spectrum of 1.</td>
<td>4</td>
</tr>
<tr>
<td>Fig. 5S 13C NMR spectrum of 1.</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 6S DEPT-135 spectrum of 1.</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 7S 1H-1H COSY spectrum of 1.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 8S HSQC spectrum of 1.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 9S HMBC spectrum of 1.</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 10S NOESY spectrum of 1.</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 11S HR-ESI-MS of 2.</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 12S UV spectrum of 2.</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 13S IR spectrum of 2.</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 14S 1H NMR spectrum of 2.</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 15S 13C NMR spectrum of 2.</td>
<td>10</td>
</tr>
<tr>
<td>Fig. 16S DEPT-135 spectrum of 2.</td>
<td>10</td>
</tr>
<tr>
<td>Fig. 17S 1H-1H COSY spectrum of 2.</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 18S HSQC spectrum of 2.</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 19S HMBC spectrum of 2.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 20S NOESY spectrum of 2.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 21S HR-ESI-MS of 3.</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 22S UV spectrum of 3.</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 23S IR spectrum of 3.</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 24S 1H NMR spectrum of 3.</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 25S 13C NMR spectrum of 3.</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 26S DEPT-135 spectrum of 3.</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 27S 1H-1H COSY spectrum of 3.</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 28S HSQC spectrum of 3.</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 29S HMBC spectrum of 3.</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 30S NOESY spectrum of 3.</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 31S HR-ESI-MS of 4.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 32S UV spectrum of 4.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 33S IR spectrum of 4.</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 34S 1H NMR spectrum of 4.</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 35S 13C NMR spectrum of 4.</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 36S DEPT-135 spectrum of 4.</td>
<td>20</td>
</tr>
</tbody>
</table>
Fig. 37S 1H-1H COSY spectrum of 4. ... 21
Fig. 38S HSQC spectrum of 4. .. 21
Fig. 39S HMBC spectrum of 4. .. 22
Fig. 40S NOESY spectrum of 4. .. 22
Fig. 41S HR-ESI-MS of 5. ... 23
Fig. 42S UV spectrum of 5. ... 23
Fig. 43S IR spectrum of 5. ... 24
Fig. 44S 1H NMR spectrum of 5. .. 24
Fig. 45S 13C NMR spectrum of 5. ... 25
Fig. 46S DEPT-135 spectrum of 5. ... 25
Fig. 47S 1H-1H COSY spectrum of 5. ... 26
Fig. 48S HSQC spectrum of 5. .. 26
Fig. 49S HMBC spectrum of 5. .. 27
Fig. 50S NOESY spectrum of 5. .. 27
Extraction and isolation

The dried and powdered roots and stems of *D. ajacis* (10 kg) were powdered and percolated with 95% EtOH at room temperature. The ethanolic solution was concentrated under reduced pressure to yield a residue (505 g). The crude extract was suspended in water, and the pH was adjusted to 4~5 with 5% HCl. Lipophilic impurities were removed from acidified extracts by extracting with CHCl₃. The pH of the aqueous layer was adjusted to 9~10 with 10% NH₃ · H₂O and re-extracted with CHCl₃ to obtain a total alkaloid fraction (80 g).

The total alkaloid was subjected to silica gel (1.0 kg; 200-300 mesh; 10 × 100 cm) CC eluting with gradient mixtures of CHCl₃-MeOH (100:0; 100:1; 50:1; 40:1; 30:1; 20:1; 10:1; 0:1; v/v; each 4.0 L; fraction size: 1000 mL/flask; flow rate: 5 mL/min). The fractions were examined by TLC and combined to give seven fractions (Frs.A-G). Fr.B (10.5 g, eluted by CHCl₃-MeOH 100:1) was loaded on an ODS CC (100.0 g; 5 × 40 cm) which was eluted with a gradient of MeOH-H₂O (50:50; 60:40; 70:30; 80:20; 90:10; 100:0; v/v; each 1.5 L; fraction size: 500 mL/flask; flow rate: 3 mL/min) to afford four subfractions (Frs.B.1-4). Fr.B.2 (75 mg) was separated by preparative HPLC (CH₃CN/H₂O 45:55; v/v; 3 mL/min) to yield compounds 1 (5.0 mg; purity > 95 %, HPLC, Rᵣ = 20.5 min) and 5 (8.5 mg; purity > 95 %, HPLC, Rᵣ = 29.5 min). Fr.B.3 (240 mg) was purified by preparative HPLC with an eluent of CH₃CN/H₂O (55:45; v/v; 3 mL/min) to yield compounds 3 (6.0 mg; purity > 94%, HPLC, Rᵣ = 18.0 min) and 8 (23.5 mg; purity > 95 %, HPLC, Rᵣ = 25.5 min). Fr.C (15.4 g, eluted by CHCl₃-MeOH 50:1) was separated by silica gel (200.0 g; 300-400 mesh; 5 × 80 cm) CC and eluted with gradient petroleum ether/acetone (100:0; 50:1; 40:1; 30:1; 10:1; 0:1; v/v; each 2.0 L; fraction size: 500 mL/flask; flow rate: 4 mL/min) to afford five fractions (Frs.C.1-5). Fr.C.3 (4.5 g) was loaded on an ODS CC (50.0 g; 3 × 40 cm) which was eluted with a gradient of MeOH-H₂O (65:35; 75:25; 85:15; 100:0; v/v; each 500 mL; fraction size: 200 mL/flask; flow rate: 3 mL/min) to afford four subfractions (Frs.C.3.1-3.4). Fr.C.3.2 (87 mg)
was purified by HPLC with an eluent of CH$_3$CN/H$_2$O (40:60; v/v; 3 mL/min) to yield compounds 2 (4.5 mg; purity > 95%, HPLC, R$_t$ = 14.0 min) and 4 (7.4 mg; purity > 94 %, HPLC, R$_t$ = 26.5 min). Fr.C.3.3 (310 mg) was separated by HPLC with an eluent of CH$_3$CN/H$_2$O (60:40; v/v; 3 mL/min) to yield compounds 6 (150.0 mg; purity > 95%, HPLC, R$_t$ = 18.0 min) and 9 (10.5 mg; purity > 95 %, HPLC, R$_t$ = 28.5 min). Fr.C.4 (1.8 g, eluted by petroleum ether/acetone 40:1) was purified by preparative HPLC (MeOH/ H$_2$O 70:30; v/v; 3 mL/min) to give compounds 7 (29.0 mg; purity > 94%, HPLC, R$_t$ = 14.5 min) and 10 (25.4 mg; purity > 95 %, HPLC, R$_t$ 30.5 min). Fr.D (8.7 g, eluted by CHCl$_3$-MeOH 40:1) was partitioned on a Sephadex LH-20 (80.0 g, 2 × 160 cm; MeOH/CHCl$_3$ 1:1) to yield two fractions (Frs.D.1-2). Fr.D.2 (2.8 g) was further purified by ODS CC (50.0 g, 2 × 35 cm; MeOH/H$_2$O 75: 25; 100 mL per fraction) to give three fractions (Frs.D.2.1-2.3). Fr.D.2.2 (66.5 mg) was purified by preparative HPLC (MeOH/ H$_2$O 70:30; v/v; 3 mL/min) to give compounds 11 (2.5 mg; purity > 95%, HPLC, R$_t$ = 9.5 min) and 12 (2.5 mg; purity > 95 %, HPLC, R$_t$ 18.0 min).
Fig. 1S HR-ESI-MS of 1.

Fig. 2S UV spectrum of 1.
Fig. 3S IR spectrum of 1.

Fig. 4S 1H NMR spectrum of 1.
Fig. 5S 13C NMR spectrum of 1.

Fig. 6S DEPT-135 spectrum of 1.
Fig. 7S 1H-1H COSY spectrum of 1.

Fig. 8S HSQC spectrum of 1.
Fig. 9S HMBC spectrum of 1.

Fig. 10S NOESY spectrum of 1.
Fig. 11S HR-ESI-MS of 2.

Fig. 12S UV spectrum of 2.
Fig. 13S IR spectrum of 2.

Fig. 14S 1H NMR spectrum of 2.
Fig. 15S 13C NMR spectrum of 2.

Fig. 16S DEPT-135 spectrum of 2.
Fig. 17S 1H-1H COSY spectrum of 2.

Fig. 18S HSQC spectrum of 2.
Fig. 19S HMBC spectrum of 2.

Fig. 20S NOESY spectrum of 2.
Fig. 21S HR-ESI-MS of 3.

Fig. 22S UV spectrum of 3.
Fig. 23S IR spectrum of 3.

Fig. 24S 1H NMR spectrum of 3.
Fig. 25S 13C NMR spectrum of 3.

Fig. 26S DEPT-135 spectrum of 3.
Fig. 27S 1H-1H COSY spectrum of 3.

Fig. 28S HSQC spectrum of 3.
Fig. 29S HMBC spectrum of 3.

Fig. 30S NOESY spectrum of 3.
Fig. 31S HR-ESI-MS of 4.

Fig. 32S UV spectrum of 4.
Fig. 33S IR spectrum of 4.

Fig. 34S 1H NMR spectrum of 4.
Fig. 35S 13C NMR spectrum of 4.

Fig. 36S DEPT-135 spectrum of 4.
Fig. 37S 1H-1H COSY spectrum of 4.

Fig. 38S HSQC spectrum of 4.
Fig. 39S HMBC spectrum of 4.

Fig. 40S NOESY spectrum of 4.
Fig. 41S HR-ESI-MS of 5.

Fig. 42S UV spectrum of 5.
Fig. 43S IR spectrum of 5.

Fig. 44S 1H NMR spectrum of 5.
Fig. 45S 13C NMR spectrum of 5.

Fig. 46S DEPT-135 spectrum of 5.
Fig. 47S 1H-1H COSY spectrum of 5.

Fig. 48S HSQC spectrum of 5.
Fig. 49S HMBC spectrum of 5.

Fig. 50S NOESY spectrum of 5.