Supporting Information

Identification and Characterization of Anticancer Compounds
Targeting Apoptosis and Autophagy from Chinese Native *Garcinia*

Species
Danqing Xu1,2,3,*, Yuanzhi Lao1,2,*, Naihan Xu4, Hui Hu3, Wenwei Fu1,2, Hongsheng Tan1,2, Yunzhi Gu1,2, Zhijun Song5, Peng Cao6, Hongxi Xu1,2

* Authors contributed equally to this work.

Affiliations
1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
2 Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, P. R. China
3 Department of Discovery Technologies, Roche R&D Center (China) Ltd, Shanghai, P. R. China
4 Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, P. R. China
5 Guangxi Botanic Garden of Medicinal Plants, Nanning, Guangxi, P. R. China
6 Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, Jiangsu, P. R. China

Correspondence
Prof. Hongxi Xu
School of Pharmacy
Shanghai University of Traditional Chinese Medicine
Shanghai, 201203, China
Phone: +86 21 5132 3089
xuhongxi88@gmail.com
Isolation and identification of isobractatin and neobractatin

General experimental procedures
NMR spectra were recorded on a Bruker AV-400 spectrometer with TMS as the internal standard. A Waters 2535 Series machine equipped with a Xbridge C18 column (4.6 × 250 mm, 5 μm) was used for HPLC analysis. Column chromatography was performed with silica gel (200–300 mesh, Qingdao Haiyang Chemical Co., Ltd.), Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Sweden), and reversed-phase C18 silica gel (50 μm, YMC, Kyoto, Japan). Analytical and preparative TLC were performed on precoated GF254 plates (0.25- or 0.5-mm thickness, Qingdao Haiyang Chemical Co. Ltd.). Detection was performed by spraying the plates with 10% sulfuric acid followed by heating.

Plant material
The trunks of *G. bracteata* were collected from Napo, Guangxi Province, People’s Republic of China, in October 2012, and authenticated by Professor Zhao Yiming, Guangxi Medicinal Garden. A voucher specimen was deposited in Guangxi Medicinal Garden (G. B. 00001) and the Innovative Research Laboratory of TCM, Shanghai University of Traditional Chinese Medicine (Herbarium No. GAR-004).

Isolation and purification procedures
The air-dried and powdered trunks of *G. bracteata* (4 kg) were extracted with 95% (v/v) ethanol (3 × 8L) and filtered at room temperature. Then the combined ethanol extract was evaporated by rotary evaporator to obtain a crude extract (754.8g) which was suspended in H₂O (2L) and then extracted with petroleum ether (PE), ethyl acetate and n-butyl alcohol (each, 3 ×2L), respectively. The combined EtOAc extracts (262.2 g) were evaporated to give a deep-brown gum and subjected to column chromatography (Φ10×75cm) on silica gel (3.0 kg, 200-300 mesh) eluted with a petroleum ether-acetone (v/v from 10:1 to 1:1) gradient system to furnish ten
fractions (Fr.A, 32.3g; Fr.B, 24.8g; Fr.C, 15.2g; Fr.D, 14.5g; Fr.E, 34.7g; Fr.F, 27.2g; Fr.G, 16.4g; Fr.H, 40.1g; Fr.I, 28.8g; Fr.J, 30.2g). The yellow powder of compound 1 (210mg) was obtained from Fraction B through repeated crystallization with acetone. The yellow precipitate from Fraction D (14.5g) was subjected to Sephadex LH-20 (3.4 × 160 cm) column chromatography by elution with methanol to afford three fractions (Fr.A1, 5.2g; Fr.A2, 4.6g; Fr.A3, 4.5g) on the basis of TLC analysis. Fraction A3 (4.5g) was subjected to column chromatography on silica gel (100g, 200-300 mesh) and eluted with chloroform to furnish nine subfractions (Fr.A3-1, 430mg; Fr.A3-2, 560mg; Fr.A3-3, 270mg; Fr.A3-4, 450mg; Fr.A3-5, 730mg; Fr.A3-6, 630mg; Fr.A3-7, 150mg; Fr.A3-8, 335mg; Fr.A3-9, 680mg) on the basis of TLC analysis. Fraction A3-7 was further performed on reversed-phase column eluted with methanol-water (from 75%- 90%) to obtain compound 2 (124mg). The purity of these two compounds was greater than 98%.

Identification of isolates

1H and 13C NMR data of compound 1 and compound 2 identified them as isobractatin [1] and neobractatin [2], respectively, by comparison with published values.

Compound 1 (isobractatin): 13C NMR (101 MHz, DMSO) δ 203.81(C-6), 179.05(C-9), 167.69(C-3), 165.32(C-1), 155.80(C-4a), 135.59(C-8a), 133.94(C-18), 132.46(C-8), 117.79(C-17), 113.22(C-4), 100.66(C-9a), 91.68(C-2), 90.64(C-12), 90.61(C-10a), 83.78(C-5), 82.71(C-23), 48.40(C-22), 46.75(C-7), 42.62(C-11), 30.23(C-25), 28.77(C-24), 28.57(C-16), 25.37(C-19), 25.26(C-21), 23.29(C-14), 20.75(C-15), 16.52(C-20), 13.29(C-13). 1H NMR (400 MHz, DMSO) δ 13.20 (s, 1H), 7.52 (d, J = 7.0 Hz, 1H), 6.04 (d, J = 3.0 Hz, 1H), 4.42 (q, J = 6.5 Hz, 1H), 3.51 (dd, J = 6.9, 4.4 Hz, 1H), 2.67 (d, J = 9.2 Hz, 1H), 1.65 (s, 3H), 1.56 (s, 3H), 1.36 (d, J = 6.6 Hz, 3H), 1.29 (s, 3H), 1.16 (s, 3H), 1.14 (s, 3H), 1.01 (s, 3H).
Compound 2 (neobractatin): 13C NMR (101 MHz, DMSO) δ 200.29 (C-5), 178.29 (C-9), 167.40 (C-3), 162.53 (C-1), 159.48 (C-4a), 151.46 (C-12), 135.85(C-8), 135.76 (C-8), 133.61 (C-8a), 118.07 (C-22), 113.05 (C-4), 106.61 (C-13), 100.92 (C-9a), 97.57 (C-2), 83.96 (C-10), 79.30 (C-6), 44.95 (C-7), 41.85 (C-17), 40.98 (C-11), 32.46 (C-16), 30.48 (C-21), 29.61 (C-20, 14), 28.75 (C-15), 26.89 (C-25), 26.11 (C-19), 18.30 (C-24); 1H NMR (400 MHz, DMSO) δ 12.69 (s, 1H), 7.18 (d, $J = 6.8$ Hz, 1H), 6.33 (dd, $J = 17.4$, 10.6 Hz, 1H), 5.99 (s, 1H), 4.92 (t, $J = 7.2$ Hz, 1H), 4.84 (d, $J = 17.4$ Hz, 1H), 4.72 (d, $J = 10.6$ Hz, 1H), 3.83-3.76 (m, 1H), 3.34 (s, 1H), 2.51 (s, 2H), 2.32 (m, 1H), 2.28 (m, 1H), 2.23 (dd, $J = 9.6$, 4.1 Hz, 1H), 2.12-2.00 (m, 1H), 1.93-1.83 (m, 1H), 1.66 (s, 3H), 1.55 (s, 6H), 1.54 (s, 3H), 1.27 (s, 3H), 1.24 (s, 3H).
Fig. 1S 13C NMR spectrum of isobractatin.

Fig. 2S 1H NMR spectrum of isobractatin.
Fig. 3S 13C NMR and DEPT135 spectrum of neobractatin.
Fig. 4S 1H NMR spectrum of neobractatin.

Fig. 5S HSQC spectrum of neobractatin.
Fig. 6S HSBC spectrum of neobractatin.

References
