Supporting Information

Comparison of the Inhibitory Effects of Delphinidin and Its Glycosides on Cell Transformation

Takayuki Sogo¹, Takuma Kumamoto¹, Hisako Ishida², Ayami Hisanaga¹, Kozue Sakao¹,², Norihiko Terahara³, Koji Wada¹,⁴, De-Xing Hou¹,²

Affiliations

¹The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
²Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
³Faculty of Health and Nutrition, Minami-Kyushu University, Miyazaki, Japan
⁴Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan

Correspondence

Dr. De-Xing Hou

The United Graduate School of Agricultural Science, Kagoshima University
Kagoshima 890 0065, Japan
Phone/Fax: +81 99 285 8649
hou@chem.agri.kagoshima-u.ac.jp
Fig. 1S Docking model of Dp3-Sam or Dp with MEK1. (A) A concept of the binding site of Dp3-Sam (green), Dp (pink), and ATP (blue) docked to MEK1. Red: α-helix;
yellow: \(\beta\)-sheet; blue: 3-turn; yellow-green: 4- or 5-turn; and aqua: loop, in upper panel.

The hydrogen bonds formed between amino acid residues of MEK1 and Dp (B) or Dp3-Sam (C).