Supporting Information

5β,19-Epoxycucurbitane Triterpenoids from *Momordica charantia*
and Their Anti-Inflammatory and Cytotoxic Activity

Chia-Ching Liaw¹*, Hui-Chi Huang²*, Ping-Chun Hsiao³⁴, Li-Jie Zhang³,
Zhi-Hu Lin³, Syh-Yuan Hwang⁴, Feng-Lin Hsu⁵, Yao-Haur Kuo³⁶⁷

* Equal contribution as first authors.

Affiliations

¹R&D Department, Starsci Biotech Co. Ltd., Taipei, Taiwan

²Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources,
China Medical University, Taichung, Taiwan

³Division of Chinese Materia Medica Development, National Research Institute of
Chinese Medicine, Taipei, Taiwan

⁴Endemic Species Research Institute, Council of Agriculture, Nantou, Taiwan

⁵Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan

⁶Graduate Institute of Integrated Medicine, College of Chinese Medicine, China

Medical University, Taichung, Taiwan
Ph.D Program for the Clinical Drug Discovery from Botanical Herbs, School of Pharmacy, Taipei Medical University, Taipei, Taiwan

Correspondence

Prof. Dr. Yao-Haur Kuo

Division of Chinese Materia Medica Development
National Research Institute of Chinese Medicine
Taipei 112, Taiwan

and Graduate Institute of Integrated Medicine, College of Chinese Medicine
China Medical University, Taichung, Taiwan

Phone: +886 2 2820 1999 ext. 7061; Fax: +886 2 2820 6150
kuoyh@nricm.edu.tw

Prof. Dr. Feng-Lin Hsu

Graduate Institute of Pharmacognosy, Taipei Medical University
Taipei 110, Taiwan

Phone: +886 2 2736 1661
hsu320@tmu.edu.tw
1H and 13C NMR spectra of compounds 1–5

Fig. 1S 1H NMR spectrum of compound 1 (pyridine-d_5, 400 MHz).

Fig. 2S 13C NMR spectrum of compound 1 (pyridine-d_5, 100 MHz).

Fig. 3S 1H NMR spectrum of compound 2 (pyridine-d_5, 400 MHz).

Fig. 4S 13C NMR spectrum of compound 2 (pyridine-d_5, 100 MHz).

Fig. 5S 1H NMR spectrum of compound 3 (pyridine-d_5, 400 MHz).

Fig. 6S 13C NMR spectrum of compound 3 (pyridine-d_5, 100 MHz).

Fig. 7S 1H NMR spectrum of compound 4 (pyridine-d_5, 400 MHz).

Fig. 8S 13C NMR spectrum of compound 4 (pyridine-d_5, 100 MHz).

Fig. 9S 1H NMR spectrum of compound 5 (pyridine-d_5, 400 MHz).

Fig. 10S 13C NMR spectrum of compound 5 (pyridine-d_5, 100 MHz).
Fig. 15: 1H NMR spectrum of compound 1 (pyridine-d$_5$, 400 MHz).
Fig. 2S 13C NMR spectrum of compound I (pyridine-d_5, 100 MHz).
Fig. 3S 1H NMR spectrum of compound 2 (pyridine-d_5, 400 MHz).
Fig. 4S 13C NMR spectrum of compound 2 (pyridine-d_5, 100 MHz).
Fig. 5S 1H NMR spectrum of compound 3 (pyridine-d_5, 400 MHz).
Fig. 6S 13C NMR spectrum of compound 3 (pyridine-d_5, 100 MHz).
Fig. 7S 1H NMR spectrum of compound 4 (pyridine-d_5, 400 MHz).
Fig. 8S 13C NMR spectrum of compound 4 (pyridine-d_5, 100 MHz).
Fig. 9S 1H NMR spectrum of compound 5 (pyridine-d_5, 400 MHz).
Fig. 10S 13C NMR spectrum of compound 5 (pyridine-d_5, 100 MHz).