Supporting Information

Astragaloside IV Protects Against Cardiac Hypertrophy via Inhibiting the Ca2+/CaN Signaling Pathway

Meili Lu1, Hongxin Wang1, Jing Wang2, Jing Zhang1, Juan Yang1, Lingjun Liang1, Leonid N. Maslov3

Affiliation

1 Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Liaoning Medical University, Jinzhou, China
2 First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
3 Laboratory of Experimental Cardiology, Institute of Cardiology, Tomsk, Russia

Correspondence

\textit{Prof. Dr. Hongxin Wang}

Department of Pharmacology
Liaoning Medical College
No.40, Section 3 SongpoRoad
Jizhou City, Liaoning 121001
P. R. China
Phone: +86 416 467 3466
Fax: +86 416 388 5335
hongxinwang@lnmu.edu.cn
Plant material

The dried roots of *Astragalus membranaceus* were collected from Neimenggu Province, China, and the species authentication was performed by Prof. Ying Yang from the China Pharmaceutical University, Nanjing.

Fig. 1S Effects of different agents on [Ca\(^{2+}\)]\(_i\) transient. (A) Representative tracings. (B) Peak amplitude and resting Ca\(^{2+}\) of the spontaneous [Ca\(^{2+}\)]\(_i\) transient. 1 μg/mL LPS-induced increase of intracellular resting Ca\(^{2+}\) was inhibited by 32 μM AS-IV, 64 μM AS-IV, 10 μM verapamil, and 1 μM CsA. Values are presented as mean ± SEM, ## p < 0.01 vs control, ** p < 0.01 vs LPS.