Supporting Information

Cytotoxic cardiac glycosides from the roots of *Streptocaulon juventas*

Rui Xue¹*, Na Han¹*, Hiroaki Sakurai², Ikuo Saiki³, Chun Ye¹, Jun Yin¹

* Both authors contributed equally to this work.

Affiliation

¹ Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China

² Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan

³ Department of Bioscience, Institute of Natural Medicine, University of Toyama, Sugitani, Toyama, Japan

Correspondence

Prof. Jun Yin
School of Traditional Chinese Materia Medica 48#
Shenyang Pharmaceutical University
103 Wenhua Road, Shenhe District
Shenyang 110016
China
Phone/Fax: +86/24/23986491
yinjun2002@yahoo.com
Fig. 1S Selected TOCOSY (\(^1H-^1H\)) and HMBC (\(^1H\rightarrow^13C\)) correlations for compound 1.

Fig. 2S \(^1H\) NMR spectrum of compound 1 (CD\(_3\)OD, 300 MHz).
Fig. 3S 13C NMR spectrum of compound 1 (CD$_3$OD, 150 MHz).

Fig. 4S Key HMBC (1H \rightarrow 13C) correlations for compound 2.
Fig. 5S 1H NMR spectrum of compound 2 (CD$_3$OD, 600 MHz).
Fig. 6S 13C NMR spectrum of compound 2 (CD$_3$OD, 150 MHz).

Fig. 7S Morphological changes in human pulmonary PC-9 adenocarcinoma cells with treatment of periplocymarin (8). After 24 h pre-incubation, the cells were cultured for 24 h without (A) or with periplocymarin at 1 µM (B).