Supporting Information for

Neolignans and Sesquiterpenes from Cell Cultures of *Stellera chamaejasme*

Li-Rui Qiao, Lin Yang, Jian-Hua Zou, Li Li, Hua Sun, Yi-Kang Si, Dan Zhang, Xiao-Guang Chen, Jun-Gui Dai*

State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Key Laboratory of Biosynthesis of Natural Products, Ministry of Health, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China

* Address for Correspondence

Prof. Dr. Jun-Gui Dai.

Institute of Materia Medica

Chinese Academy of Medical Sciences and Peking Union Medical College

1 Xian Nong Tan Street

Beijing 100050

People’s Republic of China

Tel: +86-10-63165195

Fax: +86-10-63017757

E-mail: jgdai@imm.ac.cn
Table of contents

- Figure 1S 1H NMR spectrum of compound 1 in CD$_3$OD.
- Figure 2S 13C NMR spectrum of compound 1 in CD$_3$OD.
- Figure 3S DEPT spectrum of compound 1 in CD$_3$OD.
- Figure 4S gHSQC spectrum of compound 1 in CD$_3$OD.
- Figure 5S gCOSY spectrum of compound 1 in CD$_3$OD.
- Figure 6S HMBC spectrum of compound 1 in CD$_3$OD.
- Figure 7S NOE spectrum of compound 1 in CD$_3$OD.
- Figure 8S IR spectrum of compound 1.
- Figure 9S CD spectrum of compound 1 in CH$_3$OH.

- Figure 10S 1H NMR spectrum of compound 2 in CD$_3$OD.
- Figure 11S 13C NMR spectrum of compound 2 in CD$_3$OD.
- Figure 12S DEPT spectrum of compound 2 in CD$_3$OD.
- Figure 13S gHSQC spectrum of compound 2 in CD$_3$OD.
- Figure 14S gCOSY spectrum of compound 2 in CD$_3$OD.
- Figure 15S HMBC spectrum of compound 2 in CD$_3$OD.
- Figure 16S NOE spectrum of compound 2 in CD$_3$OD.
- Figure 17S IR spectrum of compound 2.
- Figure 18S CD spectrum of compound 2 in CH$_3$OH.

- Figure 19S 1H NMR spectrum of compound 3 in CDCl$_3$.
- Figure 20S 13C NMR spectrum of compound 3 in CDCl$_3$.
- Figure 21S DEPT spectrum of compound 3 in CDCl$_3$.
- Figure 22S gHSQC spectrum of compound 3 in CDCl$_3$.
- Figure 23S gCOSY spectrum of compound 3 in CDCl$_3$.
- Figure 24S HMBC spectrum of compound 3 in CDCl$_3$.
- Figure 25S NOESY spectrum of compound 3 in CDCl$_3$.
- Figure 26S NOE spectrum of compound 3 in CDCl$_3$.
- Figure 27S IR spectrum of compound 3.
Figure 28S CD spectrum of compound 3 in CH$_3$OH.

Figure 29S CD spectrum in situ formed Mo$_2$(OAc)$_4$ of compound 3 in DMSO.

Figure 30S A diagram for Newman Projection of the 1, 2-diol moieties of 3.

Figure 31S 1H NMR spectrum of compound 4 in CDCl$_3$.

Figure 32S 13C NMR spectrum of compound 4 in CDCl$_3$.

Figure 33S DEPT spectrum of compound 4 in CDCl$_3$.

Figure 34S gHSQC spectrum of compound 4 in CDCl$_3$.

Figure 35S gCOSY spectrum of compound 4 in CDCl$_3$.

Figure 36S HMBC spectrum of compound 4 in CDCl$_3$.

Figure 37S NOE spectrum of compound 4 in CDCl$_3$.

Figure 38S IR spectrum of compound 4.

Figure 39S CD spectrum of compound 4 in CH$_3$OH.

Figure 40S 1H NMR spectrum of compound 5 in CD$_3$OD.

Figure 41S 13C NMR spectrum of compound 5 in CD$_3$OD.

Figure 42S DEPT spectrum of compound 5 in CD$_3$OD.

Figure 43S gHSQC spectrum of compound 5 in CD$_3$OD.

Figure 44S gCOSY spectrum of compound 5 in CD$_3$OD.

Figure 45S HMBC spectrum of compound 5 in CD$_3$OD.

Figure 46S ROESY spectrum of compound 5 in CD$_3$OD.

Figure 47S NOE spectrum of compound 5 in CD$_3$OD.

Figure 48S IR spectrum of compound 5.

Figure 49S CD spectrum of compound 5 in CH$_3$OH.

Figure 50S 1H NMR spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 51S 13C NMR spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 52S DEPT spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 53S gHSQC spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 54S gCOSY spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 55S HMBC spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 56S NOE spectrum of compound 6 in CD$_3$COCD$_3$.

Figure 57S IR spectrum of compound 6.

Figure 58S CD spectrum of compound 6 in CH$_3$OH.

Figure 59S 1H NMR spectrum of compound 7 in CD$_3$COCD$_3$.

Figure 60S 13C NMR spectrum of compound 7 in CD$_3$COCD$_3$.

Figure 61S DEPT spectrum of compound 7 in CD$_3$COCD$_3$.

Figure 62S gHSQC spectrum of compound 7 in CD$_3$COCD$_3$.

Figure 63S HMBC spectrum of compound 7 in CD$_3$COCD$_3$.

Figure 64S NOESY spectrum of compound 7 in CD$_3$COCD$_3$.

Figure 65S IR spectrum of compound 7.

Figure 66S CD spectrum of compound 7 in CH$_3$OH.

Figure 67S 1H NMR spectrum of compound 8 in CDCl$_3$.

Figure 68S 13C NMR spectrum of compound 8 in CDCl$_3$.

Figure 69S DEPT spectrum of compound 8 in CDCl$_3$.

Figure 70S gHSQC spectrum of compound 8 in CDCl$_3$.

Figure 71S gCOSY spectrum of compound 8 in CDCl$_3$.

Figure 72S HMBC spectrum of compound 8 in CDCl$_3$.

Figure 73S NOESY spectrum of compound 8 in CDCl$_3$.

Figure 74S NOE spectrum of compound 8 in CDCl$_3$.

Figure 75S IR spectrum of compound 8.

Figure 76S CD spectrum of compound 8 in CH$_3$OH.

Cytotoxicity Bioassays of Compounds 1–8.

Table 1S. Cytotoxicity of metabolites 1–8 against human cancer cells.
Figure 1S 1H NMR spectrum of compound I in CD$_3$OH.
Figure 2S 13C NMR spectrum of compound 1 in CD$_3$OH.
Figure 3S DEPT spectrum of compound 1 in CD$_3$OH.
Figure 4S gHSQC spectrum of compound 1 in CD$_3$OH.
Figure 5S gCOSY spectrum of compound 1 in CD$_3$OH.
Figure 6S HMBC spectrum of compound 1 in CD$_3$OH.
Figure 7S: NOE spectrum of compound 1 in CD$_3$OH.
Figure 8S IR spectrum of compound 1.
Figure 9S CD spectrum of compound 1 in CD$_3$OH.
Figure 10S 1H NMR spectrum of compound 2 in CD$_3$OH.
Figure 11S 13C NMR spectrum of compound 2 in CD$_3$OH.
Figure 12S DEPT spectrum of compound 2 in CD$_3$OH.
Figure 13S gHSQC spectrum of compound 2 in CD$_3$OD.
Figure 14S gCOSY spectrum of compound 2 in CD$_3$OH.
Figure 15S HMBC spectrum of compound 2 in CD$_3$OH.
Figure 16S NOE spectrum of compound 2 in CD$_3$OD.
Figure 17S IR spectrum of compound 2.
Figure 18S CD spectrum of compound 2 in CD₃OH.
Figure 19S 1H NMR spectrum of compound 3 in CDCl$_3$.
Figure 20S 13C NMR spectrum of compound 3 in CDCl₃.
Figure 21S DEPT spectrum of compound 3 in CDCl₃.
Figure 22S gHSQC spectrum of compound 3 in CDCl₃.
Figure 23S gCOSY spectrum of compound 3 in CDCl₃.
Figure 24S HMBC spectrum of compound 3 in CDCl₃.
Figure 25S NOESY spectrum of compound 3 in CDCl$_3$.
Figure 26S NOE spectrum of compound 3 in CDCl₃.
Figure 27S IR spectrum of compound 3.
Figure 28S CD spectrum of compound 3 in CH$_3$OH.
Figure 29S CD spectrum in situ formed Mo$_2$(OAc)$_4$ of compound 3 in DMSO.
Figure 30S A diagram for Newman Projection of the 1, 2-diol moieties of 3.
Figure 31S 1H NMR spectrum of compound 4 in CDCl$_3$.
Figure 32 13C NMR spectrum of compound \textbf{4} in CDCl\textsubscript{3}.
Figure 33S DEPT spectrum of compound 4 in CDCl₃.
Figure 34S gHSQC spectrum of compound 4 in CDCl₃.
Figure 35S gCOSY spectrum of compound 4 in CDCl₃.
Figure 36S HMBC spectrum of compound 4 in CDCl₃.
Figure 37S NOE spectrum of compound 4 in CDCl₃.
Figure 38S IR spectrum of compound 4.
Figure 39S CD spectrum of compound 4 in CH₃OH.
Figure 40: 1H NMR spectrum of compound 5 in CD$_3$OD.
Figure 41: 13C NMR spectrum of compound 5 in CD$_3$OD.
Figure 42S DEPT spectrum of compound 5 in CD$_3$OD.
Figure 43S gHSQC spectrum of compound 5 in CD$_3$OD.
Figure 44S gCOSY spectrum of compound 5 in CD$_3$OD.
Figure 45S HMBC spectrum of compound 5 in CD$_3$OD.
Figure 46S ROESY spectrum of compound 5 in CD$_3$OD.
Figure 47S NOE spectrum of compound 5 in CD$_3$OD.
Figure 48S IR spectrum of compound 5.
Figure 49S CD spectrum of compound 5 in CH$_3$OH.
Figure 50 1H NMR spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 51S ¹³C NMR spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 52S DEPT spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 53S gHSQC spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 54S gCOSY spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 55S HMBC spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 56S NOE spectrum of compound 6 in CD$_3$COCD$_3$.
Figure 57S IR spectrum of compound 6.
Figure 58S CD spectrum of compound 6 in CH$_3$OH.
Figure 59S 1H NMR spectrum of compound 7 in CD$_3$COCD$_3$.
Figure 60S 13C NMR spectrum of compound 7 in CD_3COCD_3.
Figure 61S DEPT spectrum of compound 7 in CD$_3$COCD$_3$.
Figure 62S gHSQC spectrum of compound 7 in CD$_3$COCD$_3$.
Figure 63S HMBC spectrum of compound 7 in CD$_3$COCD$_3$.
Figure 64S NOESY spectrum of compound 7 in CD$_3$COCD$_3$.
Figure 65S IR spectrum of compound 7.
Figure 66S CD spectrum of compound 7 in CH$_3$OH.

![CD spectrum of compound 7 in CH$_3$OH.](image)
Figure 67S 1H NMR spectrum of compound 8 in CDCl$_3$.
Figure 68S 13C NMR spectrum of compound 8 in CDCl$_3$.
Figure 69S DEPT spectrum of compound 8 in CDCl₃.
Figure 70S gHSQC spectrum of compound 8 in CDCl₃.
Figure 71S gCOSY spectrum of compound 8 in CDCl₃.
Figure 72S HMBC spectrum of compound 8 in CDCl₃.
Figure 73S NOESY spectrum of compound 8 in CDCl₃.
Figure 74S NOE spectrum of compound 8 in CDCl₃.
Figure 75S IR spectrum of compound 8.
Figure 76S CD spectrum of compound 8 in CH$_3$OH.
Cytotoxicity Bioassays of Compounds

The HCT-8 human colorectal adenocarcinoma cell line, the Bel-7402 human liver cancer cell line, and the BGC-823 human gastric cancer cell line were purchased from the Institute of Cell Biology (Shanghai, P.R. China). The A549 human lung carcinoma cell line, the MCF-7 human breast adenocarcinoma cell line, and the A2780 human ovarian cancer cell line were obtained from ATCC (Manassas, VA, USA). All five tumor cell lines were maintained in RPMI1640 medium supplemented with 10% (v/v) fetal bovine serum (FBS), 100 units/mL penicillin, and 100 µg/mL streptomycin. Cultures were incubated at 37 °C in a humidified atmosphere of 5% CO₂. Tumor cells were seeded in 96-well microtiter plates at 1200 cells/well. After 24 h, compounds were added to the cells. After incubation for 96 h, cell viability was determined by measuring the metabolic conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into purple formazan crystals by active cells. The MTT assay results were read using an MK3 Wellscan (Labsystem Dragon, Helsinki, Finland) plate reader at 570 nm. All compounds were tested at five concentrations (10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, 10⁻⁹ mol) and were dissolved in 100% DMSO with a final concentration of DMSO of 0.1% (v/v) in each well. Paclitaxel (Sigma, purity>99%) was used as a positive control. Each concentration of the compounds was tested in three parallel wells. IC₅₀ values were calculated using Microsoft Excel software. The results are shown in the following Table 1S.
Table 1S. Cytotoxicity of metabolites 1–8 against human cancer cells.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>HCT-8</th>
<th>Bel-7402</th>
<th>BGC-823</th>
<th>A549</th>
<th>A2780</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>2</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>3</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>4</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>5</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>6</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>7</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>8</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>paclitaxel</td>
<td>0.037</td>
<td>0.1</td>
<td>0.007</td>
<td>0.019</td>
<td>0.0063</td>
</tr>
</tbody>
</table>