Supporting Information to:

Inhibitory Constituents of Lipopolysaccharide-Induced Nitric Oxide Production in BV2 Microglia isolated from *Amomum tsao-ko*

Ki Yong Lee, Seung Hyun Kim, Sang Hyun Sung, Young Choong Kim

Affiliation
College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Korea

Correspondence
Prof. Dr. Young Choong Kim
College of Pharmacy and Research Institute of Pharmaceutical Sciences
Seoul National University
San 56-1
Sillim-Dong
Gwanak-Gu
Seoul 151-742
Korea
Tel.: +82/2/880/7842
Fax: +82/2/888/2933
E-mail: youngkim@snu.ac.kr
Fig. 1S. 1H-NMR (400 MHz, CD$_3$OD) spectrum of compound 1.

Fig. 2S. 13C-NMR (100 MHz, CD$_3$OD) spectrum of compound 1.
Fig 3S. HMBC spectrum of compound 1.
Fig. 4S. 1H-NMR (300 MHz, CD$_3$OD) spectrum of compound 2.

Fig. 5S. 13C NMR (100 MHz, CD$_3$OD) spectrum of compound 2.
Fig. 6S. HMBC spectrum of compound 2.
Fig. 7S. Effect of the methanolic extract and the fractions of *A. tsao-ko* on LPS-induced NO production in BV2 microglia

BV2 cells were washed with phenol red-free DMEM and incubated with test samples (50 µg/mL) for 1 hr. The cultures were then stimulated with 100 ng/mL of LPS for 24 h. After incubation, NO production was measured by the Griess reaction and sodium nitrite was used as the standard. Nitrite concentrations of control and LPS-treated cultures were 5.04 ± 0.82 and 67.34 ± 1.80 µM, respectively. The solid bar shows relative NO production (%) which was calculated as 100 × (nitrite concentration of LPS + sample-treated – nitrite concentration of control)/(nitrite concentration of LPS-treated – nitrite concentration of control). LPS-stimulated value differs significantly from control at a level of p < 0.001. Results differ significantly from the LPS-treated, ** p < 0.01 and *** p < 0.001, respectively. The hatched bar shows the cell viability relative to control cultures. All values are expressed as the means ± S.D. (n = 3).