Age-related changes of bicaudate ratio and maximal brainstem diameters: normative values on MRI.

Sven F. Garbade, Phd, Nikolas Boy, MD, Jana Heringer, MD, Stefan Kölker, MD, Inga Harting, MD.

How to use supplementary percentiles and LMS tables

The Excel files contain tables with the L, M, and S parameters needed to generate exact percentiles and SD-scores (also called z-scores), as well as percentile values for the 1th, 3th, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentiles. Age is listed as months and years points. To obtain L, M, and S values at finer age intervals interpolation could be used.

The LMS parameters are the median (M), the generalized coefficient of variation (S), and the power in the Box-Cox transformation (L).

Computing z-score and corresponding percentile for a given measurement:

The z-score (z) and corresponding percentile for a given measurement (x) at a certain age can be computed using the following equation:

\[z = \frac{(xl/M)^L - 1}{LS} \text{ for } L \neq 0 \]

or

\[z = \ln(xl/M)/S, \text{ for } L = 0 \]

where x is the physical measurement (e.g. BCR, pons etc.) and L, M and S are the values from the appropriate table corresponding to the age. The percentile corresponding to the computed z-score value can be determined by referring to the sheet “standard normal distribution”, where some z-scores and corresponding percentiles are listed. For example, the z-score -1.645 corresponds to the 5th, 0 to the 50th, 1.645 to the 95th and 1.881 to the 97th percentile. Alternatively, many spreadsheet programs have functions that convert z-scores to percentiles and vice versa.
Computing the value of a given measurement at a particular z-score or percentile:

The value \(x \) of a given physical measurement (e.g. BCR or pons) at a particular z-score (that corresponds to a percentile) can be computed using the following equation:

\[
x = M \cdot (1 + L \cdot S \cdot z)^{1/L} \quad \text{for } L \neq 0
\]

or

\[
x = M \exp(Sz) \quad \text{for } L = 0
\]

where the \(L, M, \) and \(S \) are the values from the appropriate table corresponding to the age. \(\exp(Sz) \) is the exponentiation function, e.g. \(e \) to the power \((Sz) \).

The z-score corresponding to a certain percentile can be determined by referring to the sheet “standard normal distribution” in the Excel file. For example, the z-score -1.645 corresponds to the 5th, 0 to the 50th, 1.645 to the 95th and 1.881 to the 97th percentile.

Examples

1) A 30 year old patient has a BCR of 0.11. From figure 2 in the paper it can be assumed that this value is just below 97th percentile. The corresponding LMS values from Excel files (no sexual separation) gives \(L = 0.8500, M = 0.0857 \) and \(S = 0.1506 \). One can compute the z-score as:

\[
z = \frac{(x / M)^L - 1}{LS} = \frac{(0.11 / 0.0857)^{0.85} - 1}{0.85 \cdot 0.1505} = 1.85
\]

This z-score indicates an almost 2 standard scores higher BCR than the reference sample. According to a standard normal distribution table, this z-scores is slightly below the 97th percentile, a spreadsheet calculator or statistic software gives 0.9678432, that is 96.78th percentile.

2) One might be interested which BCR value of a 30 year old patient corresponds to the 50th percentile. According to a standard normal distribution table (or software), the 50th percentile has a z-score of 0. The BCR corresponding to the 50th centile in a 30 year old patient is obtained by the following equation (LMS-values see above, no sexual separation):

\[
x = M \cdot (1 + L \cdot S \cdot z)^{1/L} = 0.0857 \cdot (1 + 0.8500 \cdot 0.1505 \cdot 0)^{1/0.8500} = 0.0857
\]

The LMS-method is described in much more detail in several publications, e.g.:
