Endokrine Orbitopathie

Graves’ Orbitopathy

A. Eckstein1, J. Esser1, S. Mattheis2, U. Berchner-Pfannschmidt1

1 Zentrum für Augenheilkunde, Abteilung für Erkrankungen des vorderen Augenabschnittes, Universität Duisburg-Essen
2 Klinik für Hals-, Nasen- und Ohrenheilkunde, Universität Duisburg-Essen

Literatur

1 Shan SJ, Douglas RS. The pathophysiology of thyroid eye disease. J Neuroophthalmol 2014; 34: 177 – 185
3 Khoo DH, Ho SC, Seah LL et al. The combination of absent thyroid peroxidase antibodies and high thyroid-stimulating immunoglobulin levels in Graves’ disease identifies a group at markedly increased risk of ophthalmopathy. Thyroid 1999; 9: 1175 – 1180
4 Eckstein AK, Plicht M, Lax H et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab 2006; 91: 3464 – 3470
Endokrine Orbitopathie

17 Görtz GE, Horstmann M, Aniol B et al. Hypoxia-dependent HIF-1 activation impacts on tissue remodeling in Graves’ ophthalmopathy – implications for smoking. JCEM 2016 [im Druck]
31 Bartalena L, Baldeschi L, Boboridis K et al. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for the management of Graves’ orbitopathy. Eur Thyroid J 2016; 5: 9 – 26
41 Bartalena L et al. The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur Thyroid J 2016; 5: 9 – 26
66 Ghadiri N. The management of thyroid eye disease by immuno-

64 Salvi M, Vannucchi G, Curro N et al. Efficacy of B

60 Gerling J, Kommerell G, Henne K et al. Retrobulbar irradiation for

57 Prummel MF, Terwee CB, Gerding MN et al. A randomized con-

58 Johnson KT, Wittig A, Loesch C et al. A retrospective study on the
efficacy of total absorbed orbital doses of 12, 16 and 20 Gy com-
bined with systemic steroid treatment in patients with Graves’
ophthalmopathy. Graefes Arch Clin Exp Ophthalmol 2010; 248:
103 – 109

59 Marcocci C, Bartalena L, Bogazzi F et al. Orbital radiotherapy
combined with high dose systemic glucocorticoids for Graves’
ophthalmopathy is more effective than radiotherapy alone: re-
14: 853 – 860

60 Gorman CA, Garrity JA, Fatourechi V et al. A prospective, ran-
donized, double-blind, placebo-controlled study of orbital radio-
therapy for Graves’ ophthalmopathy. Ophthalmology 2001; 108:
1523 – 1534

61 Gerling J, Kommerell G, Henne K et al. Retrobulbar irradiation for
thyroid-associated ophthalmopathy: double-blind comparison be-
tween 2.4 and 16 Gy. Int J Radiat Oncol Biol Phys 2003; 55:
182 – 189

62 Kahaly G, Schrezenmier J, Krause U et al. Ciclosporin and predni-
sone v. prednisone in treatment of Graves’ ophthalmopathy: a
controlled, randomized and prospective study. Eur J Clin Invest
1986; 16: 415 – 422

63 Ghadiri N. The management of thyroid eye disease by immuno-
modulation – The Cambridge regime. International Thyroid Eye

64 Sahi M, Vannucchi G, Curro N et al. Efficacy of B-cell targeted
therapy with rituximab in patients with active moderate to severe
Graves’ ophthalmopathy: a randomized controlled study. J Clin En-
docrinol Metab 2015; 100: 422 – 431

65 Stan MN, Garrity JA, Carranza Leon BG et al. Randomized con-
donized trial of rituximab in patients with Graves’ ophthalmopathy. J Clin
Endocrinol Metab 2015; 100: 432 – 441

66 Ueki I, Abinu N, Kobayashi M et al. B cell-targeted therapy with
anti-CD20 monoclonal antibody in a mouse model of Graves’ hy-

67 Mitchell AL, Gan EH, Morris M et al. The effect of B cell depletion
therapy on anti-TSH receptor antibodies and clinical outcome in
glucocorticoid-refractory Graves’ ophthalmopathy. Clin Endocrinol
(Oxford) 2013; 79: 437 – 442

68 Heyes C, Nolan R, Leahy M et al. Treatment-resistant elephantiasic
thyroid dermopathy responding to rituximab and plasmapheresis.
Australas J Dermatol 2012; 53: e1 – e4

69 Riedl M, Kuhn A, Kramar I et al. Prospective, systematically re-
corded mycophenolate safety data in Graves’ ophthalmopathy.
J Endocrinol Invest 2016; 39: 687 – 694

70 Waecklamp I, Baldechi L, Saeed P et al. Surgical or medical de-
compression as a first-line treatment of optic neuropathy in
Graves’ ophthalmopathy? A randomized controlled trial. Clin En-
docrinol (Oxford) 2005; 63: 323 – 328

71 Curro N, Covelli D, Vannucchi G et al. Therapeutic outcomes of
high-dose intravenous steroids in the treatment of dysthyroid
optic neuropathy. Thyroid 2014; 24: 897 – 905

72 Messmer EM. The pathophysiology, diagnosis, and treatment of
dry eye disease. Dtsch Arztebl Int 2015; 112: 71 – 81; quiz 82

73 Wabbel s B, Forl M. [Botulinum toxin treatment for crocodile tears,
spastic entropion and for dysthyroid upper eyelid retraction].
Ophthalmologe 2007; 104: 771 – 776

74 Salour H, Bagheri B, Aletaha M et al. Transcutaneous dysport in-
jection for treatment of upper eyelid retraction associated with
thyroid eye disease. Orbit 2010; 29: 114 – 118

75 Shih MJ, Liao SL, Lu HY. A single transcutaneous injection with
Botox for dysthyroid lid retraction. Eye 2004; 18: 466 – 469

76 Uddin JM, Davies PD. Treatment of upper eyelid retraction asso-
ciated with thyroid eye disease with subconjunctival botulinum

77 Eber R, Botulinum toxin type A in upper lid retraction of Graves’

78 Chee E, Chee SP. Subconjunctival injection of triamcinolone in the
treatment of lid retraction of patients with thyroid eye disease: a

79 Lee SJ, Kim TH, Jang SY et al. Treatment of upper eyelid retraction
related to thyroid-associated ophthalmopathy using subconjunc-
2013; 251: 261 – 270

80 Eckstein A, Esser J. Surgical Management of extracranial Muscle
Dysfunction in Patients with GO. In: Bahn RS, ed. Graves’ Disease.
New York: Springer; 2015

81 Abramoff MD, Kalmann R, de Graaf ME et al. Rectus extraocular
muscle paths and decompression surgery for Graves ophthalmopathy:
mechanism of motility disturbances. Invest Ophthalmol Vis Sci
2002; 43: 300 – 307

82 Rocchi R, Lenzi R, Marino M et al. Rehabilitative orbital decom-
pression for Graves’ ophthalmopathy: risk factors influencing the new
onset of diplopia in primary gaze, outcome, and patients’ satis-
faction. Thyroid 2012; 22: 1170 – 1175

83 Ben Simon GJ, Syed HM, Lee S et al. Strabismus after deep lateral
wall orbital decompression in thyroid-related orbitopathy patients
using automated hess screen. Ophthalmology 2006; 113:
1050 – 1055

84 Baldechi L, MacAndie K, Hintschich C et al. The removal of the
deep lateral wall in orbital decompression: its contribution to
exophthalmos reduction and influence on consecutive diplopia.

85 Fayers T, Barker LE, Verity DH et al. Oscillopsia after lateral wall

86 Rocchi R, Lenzi R, Marino M et al. Rehabilitative orbital decom-
pression for Graves’ orbitopathy: risk factors influencing the new
onset of diplopia in primary gaze, outcome and patients’ satisfac-
tion. A large retrospective study. Thyroid 2012; 22: 1170 – 1175

87 Sellari-Franceschini S, Berrettini S, Santoro A et al. Orbital decom-
pression in Graves’ ophthalmopathy by medial and lateral wall re-

88 Kim JW, Goldberg RA, Shorr N. The inferomedial orbital strut: an
anatomic and radiographic study. Ophthal Plast Reconstr Surg
2002; 18: 355 – 364

89 Kaminsky J, Ridder GJ, Eckstein A et al. Operative Therapie bei

90 Kushner BJ. Torsional diplopia after transantral orbital decom-
pression and extraocular muscle surgery associated with Graves’

91 McCann JD, Goldberg RA, Anderson KL et al. Medial wall decom-
pression for optic neuropathy but lateral wall decompression with
fat removal for non vision-threatening indications. Am J Ophthal-
mol 2006; 141: 916 – 917
92 Yao WC, Sedaghat AR, Yadav P et al. Orbital decompression in
the endoscopic age: The modified inferomedial orbital strut.
Otolarngolog Head Neck Surg 2016; 154: 963 – 969
93 Reich SS, Null RC, Timoney PJ et al. Trends in orbital decom-
pression techniques of surveyed ASOPRS Members. Ophthal Plast
Reconst Surg 2015; DOI: 10.1097/IOP.0000000000000573
94 Moutits MP, Bijl H, Altea MA et al. Outcome of orbital decom-
pression for disfiguring proptosis in patients with Graves’ orbi-
93: 1518 – 1523
95 Oliviari N. Transpalpebral decompression of endocrine ophthal-
mopathy (Graves’ disease) by removal of intraorbital fat: experi-
ence with 147 operations over 5 years. Plast Reconstr Surg 1991;
87: 627 – 641; discussion 642 – 643
96 Jordan DR. Re: “Orbital Fat Decompression for Thyroid Eye Dis-
ease: Retrospective Case Review and Criteria for Optimal Case
98 Eckstein A, Schulte S, Esser J. Is combined surgical correction of
horizontal and vertical squint of value in Graves’ ophthalmop-
athy?. Klin Monatsbl Augenheilk 2004; 221: 769 – 775
99 Jellemza HM, Saeed P, Everhard-Halm Y et al. Bilateral inferior rec-
tus muscle recession in patients with Graves orbitopathy: is it ef-
100 Schittkowski M, Fichter N, Guthoff RF. [Strabismus surgery in
Grave’s disease – dose-effect relationships and functional results].
Augenmuskeleroperationen bei endokriner Orbitopathie: Dosis-
Wirkungs-Beziehung und funktionelle Ergebnisse. Klin Monatsbl
Augenheilk 2004; 221: 941 – 947
101 Eckstein A, Raczyński S, Dekowski D et al. [Contralateral recession
of the inferior oblique muscle in Graves’ disease patients with
mild M. rectus inferior fibrosis.]. Klin Monatsbl Augenheilk 2015;
232: 1178 – 1183
102 Moen MC, Ament C, Azar NF. The characteristics and surgical
outcomes of medial rectus recessions in Graves’ ophthalmopathy.
103 Schlüter S, Dekowski D, Stechmann D et al. Primäre und sekun-
däre Rücklagerung des M. rectus superior bei Endokriner Orbito-
104 Esser J. Ergebnisse der Einmuskelperangie bei Endokriner Orbito-
pathie. Z Prakt Augenheilk 1993; 14: 280 – 292
105 Eckstein A, Weiernmüller C, Holldt M et al. Schielformen und
Augenmuskeloperationen nach Orbitadekompression: Z Prakt Augenheilk
2011; 32: 335 – 344
106 Eckstein A et al. Schielformen und Augenmuskeloperationen
nach Orbitadekompression. Z Prakt Augenheilk 2011; 32: 335 –
344
107 Schittkowski M, Fichter N, Guthoff RF. [Strabismus surgery in
Grave’s disease–dose-effect relationships and functional results].
Klin Monatsbl Augenheilk 2004; 221: 941 – 947
108 Schlüter S et al. Primäre und sekundäre Rücklagerung des M.
rectus superior bei Endokriner Orbitopathie. Z pradt Augenheilk
2015; 36
109 Eckstein A et al. Contralateral recession of the inferior oblique
muscle in Graves’ disease patients with mild M. rectus inferior fi-
brosis. Klin Monatsbl Augenheilk 2015
110 Esser J. Ergebnisse der Einmuskelperangie bei Endokriner Orbito-
pathie. Z prakt Augenheilk 1993; 14: 280 – 292
111 Esser J, Eckstein A. Ocular muscle and eyelid surgery in thyroid-
associated orbitopathy. Exp Clin Endocrinol Diabetes 1999; 107:
55: 214 – 221
112 Esser J, Schittkowski M, Eckstein A. [Graves’ orbitopathy: inferior
rectus tendon elongation for large vertical squint angles that
cannot be corrected by simple muscle recession]. Klin Monatsbl Augen-
heilk 2011; 228: 880 – 886
113 Esser J, Eckstein A. Ocular muscle and eyelid surgery in thyroid-
associated orbitopathy. Exp Clin Endocrinol Diabetes 1999; 107
(Suppl. 5): S214 – S221
114 Esser J, Schittkowski M, Eckstein A. Endocrine Orbitopathy:
M.-rectus-inferior-Sehnenverlängerung bei großen vertikalen
Schielwinkeln, die nicht durch eine einfache Muskelnrücklagerung
korrigiert werden können. Klin Monatsbl Augenheilk 2011; 228:
880 – 886
115 Eckstein A, Schittkowski M, Esser J. Surgical treatment of Graves’
ophthalmopathy. Best Pract Res Clin Endocrinol Metab 2012; 26:
339 – 358
116 Eckstein A, Esser J. Durch eine kleine temporäre Tarsorrhaphie
lässt sich der Effekt der Unterkliederlagerung mit Implantat bei
Patienten einer Endokrinen Orbitopathie signifikant steigern. Klin
Monatsbl Augenheilk 2011; 228: 887 – 891
117 Baldeschi L. Correction of lid retraction and exophthalmos. Dev
Ophthalmol 2008; 41: 103 – 126
118 Hintschich C, Hartoglou C. Full thickness eyelid transsection
(blepharotomy) for upper eyelid lengthening in lid retraction asso-
ciated with Graves’ disease. Br J Ophthalmmol 2005; 89:
413 – 416
119 Mourtis MP, Sasim IV. A single technique to correct various de-
grees of upper lid retraction in patients with Graves’ orbitopathy.
Br J Ophthalmmol 1999; 83: 81 – 84
120 Oliver JM, Rose GE, Khaw PT et al. Correction of lower eyelid re-
traction in thyroid eye disease: a randomised controlled trial of
retractor tenotomy with adjuvant antimitabolite versus scleral
121 Mourtis MP, Koonneef L. Lid lengthening by sclera interposition
for eyelid retraction in Graves’ ophthalmopathy. Br J Ophthalmmol
1991; 75: 344 – 347
122 Harvey JT, Corin S, Nixon D et al. Modified levator aponeurosis re-
cession for upper eyelid retraction in Graves’ disease. Ophthalmic
123 Schittkowski MP, Fichter N, Guthoff RF. Das freie autologe Tarsus-
transplantat als Spacer zur Behandlung der Unterkliederlagerung
bei Endokriner Orbitopathie. Klin Monatsbl Augenheilk 2008; 225:
708 – 712
124 Feldman KA, Puttermann AM, Farber MD. Surgical treatment of
thyroid-related lower eyelid retraction: a modified approach.
ed.s. Graves’ Orbitopathy: A multidisciplinary Approach Questions
126 Bartalena L, Baldeschi L, Boboridis K et al. The 2016 European
Thyroid Association/European Group on Graves’ Orbitopathy
Guidelines for the Management of Graves’ Orbitopathy. Eur
Thyroid J 2016; 5: 9 – 26