Supporting Information

Expression Profile of Human Fc Receptor-like 1, 2 and 4 Molecules in Peripheral Blood Mononuclear Cells of Patients with Hashimoto’s Thyroiditis and Graves’ Disease

Authors
D. Rostamzadeh¹, M. H. Dabbaghmanesh², M. Shabani³, A. Hosseini¹, Z. Amirghofran¹, ⁴

Affiliations
¹Immunology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
²Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
³Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
⁴Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondences

Z. Amirghofran
Department of Immunology
School of Medicine
Shiraz University of Medical Sciences
Shiraz, Iran
Tel.: +98/711/2351 575
Fax: +98/711/2351 575
amirghz@sums.ac.ir

M. Shabani
Monoclonal Antibody Research Center
Avicenna Research Institute
ACECR, Tehran
Iran
Tel.: +98/212/2432 020
Fax: +98/212/2432 021
msshabani@Avicenna.ac.ir
Fig. 1S FCRL2 protein expression on peripheral blood mononuclear cells (PBMCs) of HT patients and normal subjects using flow cytometry.

<table>
<thead>
<tr>
<th>Cell count</th>
<th>HT Patients</th>
<th>Normal subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.85%</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td>6.8%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Cell count
PBMCs were isolated from blood of subjects and stained for FCRL2 expression with monoclonal anti-human FCRL2 antibody. FCRL2 positive cells were determined on lymphocytes gated on forward vs. side scatter dot plot. The anti-ENV11 monoclonal antibody specific to human immunodeficiency virus envelope was used as isotype-matched control (gray histogram). Data was analyzed by CellQuest Pro software. The percentage of FCRL2 expression (black line) in four HT patients and four healthy controls is shown.
Fig. 2S Comparison of FCRL1, 2, and 4 expressions in different age subgroups of Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) patients with corresponding controls.
We categorized HT patients and their corresponding controls into five subgroups according to age intervals of 10 years. GD patients and the corresponding controls were divided into four subgroups according to age intervals of 10 years. The data are presented as mean and error bars represent standard error of gene expression fold changes. The FCRL1, 2, and 4 gene expressions in different age subgroups of patients and controls were compared. A, B, C are FCRL1, 2, 4 expressions in HT patients, respectively, and D, E, F are FCRL1, 2, 4 expressions in GD patients respectively. * p <0.05, ** p <0.01, *** p <0.001. Analysis of FCRL1 expression showed significant down-regulation in four subgroups of HT and only in one subgroup of GD patients. FCRL2 revealed significantly higher expression in all four age subgroups of GD, but only in the two younger subgroups of HT. We observed significant overexpression of FCRL4 in the two younger subgroups of GD patients.
Fig. 3S Comparison of FCRL1, 2, and 4 transcript profiles in peripheral blood mononuclear cells from Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) patients.

A FCRL1 mRNA expression, B FCRL2 mRNA expression, and C FCRL4 mRNA expression. The data are presented as median fold changes in mRNA levels. Although no significant difference was shown in FCRL1 expression between HT and GD patients, significant differences were found in FCRL2 and 4 expressions between the two groups. *** p <0.001.
Fig. 4S Correlation analysis between FCRL1, FCRL2, and FCRL4 mRNA expression levels in Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) patients.

A positive correlation of FCRL2 with FCRL1 (r: 0.49, p <0.001), FCRL2 with FCRL4 (r: 0.60, p <0.001), and FCRL1 with FCRL4 (r: 0.38, p <0.004) mRNA expression levels (A, B, and C) in HT patients was observed. In GD patients, FCRL2 showed correlation with FCRL4 mRNA expression (r: 0.79, p <0.001) (D).