Literatur zu

Kinderanästhesie
Macht Narkose dumm?
Karin Becke • Christian Siebert • Michael Dinkel

1 Ramsay JG, Roizen M. SmartTots: a public-private partnership between the United States Food and Drug Administration (FDA) and the International Anesthesia Research Society (IARS). Paediatr Anaesth 2012; 22: 969–972

2 http://www.euroanaesthesia.org/sitecore/Content/About_the_ESA/ESA_Committees/Research%20Committee/SmartTots%20Task%20Force.aspx

3 Cowan WM. The development of the brain. Sci Am 1979; 241: 113–133


9 Stratman G. Neurotoxicity of anesthetic drugs in the developing brain. Anesthesiology 2011; 113: 1170–1179


12 Weight FF, Aguayo LG, White G et al. GABA- and glutamate-gated ion channels as molecular sites of alcohol and anesthetic action. AdvBiochemPsychopharmacol 1992; 47:3 35–347


18 Istaphanous GK, Howard J, Nan X et al. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology 2011; 114: 578–587


21 Davidson A. Neurotoxicity and the need for anesthesia in the newborn. Does the emperor have no clothes? Anesthesiology 2012; 116: 507–509


24 Farwell JR. Phenobarbital for febrile seizures – effects on -intelligence and on seizure recurrence. NEJM 1990; 322: 364–369


30 International Standard Randomised Controlled Trial Number Register (ISRCTN)12437565


33 Zhang X, Paule MG, Newport GD et al. MicroPET/CT imaging of [18F]-FEPPA in the nonhuman primate: a potential biomarker of pathogenic processes associated with anesthetic-induced neurotoxicity. ISRN Anesthesiology 2012; Article ID 261640


36 http://www.smarttots.org/resources/consensus.html

37 Vutskits L. Anesthetic-related neurotoxicity and the developing brain: shall we change practice? Paediatr Drugs 2012; 14: 13–21