Supplementary Fig. 1 Nanoparticles in lactose control 4 cH prefiltered (filter 100 nm). The peak between 0.8 and 1.8 nm is of interest. Mean size: 1.29 nm. Three consecutive measurements. Signals above 70 nm are insignificant; low intensity noise occurs when the laser does not detect particles.

Supplementary Fig. 2 Nanoparticles in Cuprum metallicum 4 cH prefiltered (filter 100 nm). Three consecutive measurements. The peak between 0.5 and 2.5 nm is of interest, others are noise. Mean size: 1.41 nm.

Supplementary Fig. 3 Nanoparticles in Cuprum metallicum 4 cH, impregnated pillules, diluted in water and dynamised again, prefiltered (filter 100 nm). Three consecutive measurements. The peak between 0.8 and 1.8 nm is of interest, others are noise. Mean size: 1.18 nm.

Supplementary Fig. 4 The PDI of the measurements shows that these are valid (particles dispersity index > 0.7 would indicate significance). The validity of particle size distribution in Cuprum 4 cH is better than in the lactose control. DLS, dynamic light scattering; PDI, poly dispersity index.
Supplementary Fig. 5 Zeta potential *Cuprum* 4 cH median values – 35.6 mV, lactose –42.9 mV, water –24 mV, *Cuprum* 200 cK –39.3 mV.

Supplementary Fig. 6 Sempervirine chemical formula. \(C_{19}H_{17}N_2 \)– Mass 273 Da.

Supplementary Fig. 7 Gelsemine chemical formula. \(C_{20}H_{22}N_2O_2 \)– Mass 322 Da.
Supplementary Fig. 8 Nanoparticle tracking analysis—Size distribution curves of copper, Gelsemium sempervirens, and water controls (soda glass). Three measurements, except for 4cH where five measurements were done.
Nanoparticle Characterisation of Homeopathically Prepared Medicines

Van Wassenhoven et al.

Supplementary Fig. 8 (Continued)
Supplementary Fig. 8 (Continued)
Supplementary Fig. 9 Aqua pura 30 cH (prepared in glass containers) originally magnified ×2500. Very small pebbles are seen, lacking any real structure or binding to each other.

Supplementary Fig. 10 Cuprum 30cH PET containers originally magnified ×2000. Structures resembling small cauliflowers are seen of variable density. Pet, polyethylene terephthalate.

Supplementary Fig. 11 Argentum metallicum 30 cH originally magnified ×2000. Some blunt blocks surrounded by very finely chiselled particles are seen which are not comparable to copper 30 cH.

Supplementary Fig. 12 Silica terra 30 cH originally magnified ×2000. Beautiful, very thin veils are seen as well as some very small particles of higher density.
Supplementary Fig. 13 Kalium muriaticum 30 cH originally magnified ×2000. Some pieces of little particles of high density are seen, surrounded by low density, flat material.

Supplementary Fig. 14 Argentum metallicum 200 cK originally magnified ×2000. Small blunt blocks and finely chiselled particles are seen; the mixture is denser than in 30 C.

Supplementary Fig. 15 Silica terra 200 cK originally magnified ×2000. Only a few small traces of the thin veils are seen in 30 cH, now in a mixture of very small grit of variable density.

Supplementary Fig. 16 Silica terra 10e-60 originally magnified ×2000. A great dispersity of many kinds of sharply cut particles is seen, not bound to each other.
Supplementary Fig. 17 *Cuprum* 10e-60 originally magnified ×2500. Small sized rounded pieces are seen, not bound to each other.

Supplementary Fig. 18 *Gelsemium sempervirens* 10e-60 (simply diluted) originally magnified ×2000. Thin fuzzy objects are seen, no definite structure, homogeneous in density.

Supplementary Fig. 19 *Argentum metallicum* 10e-60 originally magnified ×2000. Blunt blocks and finely chiselled particles are still seen as in 200 K but more scattered.
Supplementary Fig. 20 Identified chemistry in dilutions/potentisations (atom% * atomic mass * µg quantity) for the five most highly concentrated atoms in the different preparations. The chemistry, related to quantities of material, differs between the various samples. The proportion of carbon, oxygen and sodium is always high, Silicium and calcium also discriminated well. Cuprum 4CH is almost pure lactose (C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}) and real values are about 9000 times higher than presented here. At this scale, while the different dilutions/potentisations of copper and low potentisations of Gelsemium cannot easily be discriminated from each other, they are readily discriminated from other metals or salt or high potentisation of Gelsemium. For silver and silica, the differences between dilutions/potentisations are already apparent.
Supplementary Fig. 21 Identified chemistry in dilutions/potentisations (atom% × atomic mass × μg quantity) for seven atoms with lower concentrations in the different preparations. Similarly, with atoms in lower concentrations, there is a difference in chemistry, related to quantities, between the various samples and some discriminated well. At this scale, *Cuprum* dilutions/potentisations are not easy to discriminate from each other but can readily be discriminated from other preparations.
Supplementary Fig. 22 Identified chemistry in dilutions/potentisations (atom%/atomic mass/µg quantity) for five most highly concentrated atoms in, at this scale, comparable preparations and water control. There is a difference in chemistry, related to quantities, between the different samples. The proportion of carbon, oxygen and sodium is higher, and although Silicium and Calcium are not as highly concentrated, they are all good discriminant factors. Preparations with higher concentrations of these elements are not shown here to make this discrimination clear.
Supplementary Fig. 23 Identified chemistry in dilutions/potentisations (atom% * atomic mass * µg quantity) for five atoms with lower concentrations in the preparations expressed at the lowest comparable scale. For less concentrated atoms, there is a difference in chemistry, related to quantities, between the various copper, silver and Gelsemium preparations, allowing all of them to be discriminated from each other.