Supporting Information to:

Crocetin Prevents Dexamethasone-Induced Insulin Resistance in Rats

Liang Xi
Zhiyu Qian
Xiangchun Shen
Na Wen
Yabing Zhang

Affiliation
Department of Pharmacology, China Pharmaceutical University, Nanjing, P.R. China

Correspondence
Zhiyu Qian
Department of Pharmacology
China Pharmaceutical University
P.O. Box 46
24 Tongjia Xiang
Nanjing 210009
People’s Republic of China
Phone: +86-25-8327-1322
Fax: +86-25-8327-1355
E-mail: trueqianzhiyu@yahoo.com.cn
Fig. 1 The results of PAS staining of hepatic glycogen of each group at week 6. The glycogen content (red granules) was significantly reduced in hepatocytes in the DEX group compared to the control group. Treatment with crocetin (40 mg/kg/d) and metformin restored the glycogen content in hepatocytes partially. (A) CON; (B) DEX; (C) DEX+CRO(H); (D) DEX+CRO(L); (E) DEX+MET.

Fig. 2 The results of IHC staining of pancreatic islet β cells of each group at week 6. Pancreatic islet β-cells exhibited compensatory hyperplasia in the DEX group. The size, distribution number, and insulin expression of islet β-cells in the DEX group were all significantly increased compared to the control group. Crocetin (40 mg/kg/d) and metformin prevented the abnormalities of the islet β-cells. (A) CON; (B) DEX; (C) DEX+CRO(H); (D) DEX+CRO(L); (E) DEX+MET.