
Abstract
!

Based on the significant inhibitory activity to-
wardmatrix metalloproteinase-2 and collagenase
noticed in preliminary studies, crude extracts of
Rhodiola rosea were partitioned and chromato-
graphed sequentially to afford three new com-
pounds, 1,2,3,6-tetra-O-galloyl-4-O‑p-hydroxy-
benzoyl-β-D-glucopyranoside (1), (E)-creoside I
(2), and (R,Z)-2-methylhept-2-ene-1,6-diol (3),
along with twenty-four known compounds (4–
27). Their structureswere determined by spectro-
scopic data analyses. All isolated compounds
were subjected to bioactivity assays. In these, 1
specifically inhibited matrix metalloproteinase-2
activity with an IC50 value of 16.3 ± 1.6 µM, while
its analogue 1,2,3,6-tetra-O-galloyl-β-D-gluco-

pyranonoside (17) inhibited matrix metallopro-
teinase-2 with an IC50 value of 23.0 ± 4.8 µM. In
the collagenase activity assay, the inhibitory ef-
fects of 1 and 17 at concentrations of both 20 and
40 µM were more potent than those of the posi-
tive control, 1,10-phenanthroline. In order to
realize whether 17 could penetrate from the epi-
dermal layer into the basal and dermal layers of
the human skin to inhibit the activity of matrix
metalloproteinase-2 and collagenase or not, a
transdermal penetration test in nude and white
mice skins was performed. Penetration percen-
tages of 17 quantified by LC‑MS were 27.8% and
74.8% in 24 hours, respectively.
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Introduction
!

Matrix metalloproteinases (MMPs) are a family of
zinc- and calcium-dependent endopeptidases,
which are grouped into the metzincin clan of
metallopeptidases (MPs) together with other
families such as ADAMs/adamalysins, astacins,
fragilysins, and serralysins. MMPs are found
throughout the animal and plant kingdoms,
where their distribution is consistent with a Dar-
winian tree-based pathway [1]. Furthermore,
polyplication has led to the presence of several
paralogous MMP genes in the same organism: 24
in humans, 26 in sea urchins, 26 in zebrafish, 7 in
sea squirts, and 2 in fruit flies. Overexpression of
MMPs may cause various inflammatory, malig-
nant, and degenerative symptoms [2]. Among
the MMPs studied, gelatinase-A (MMP-2), gela-
tinase-B (MMP-9), and collagenase-1 (MMP-1)
were reported to be responsible for the signal
transduction of dermal photoaging [3], and inhi-
bition of the activities of these two enzymes could
potentially slow down skin aging. Thus, the search
d… Planta Med 2016; 82: 698–704
for bioactive compounds that can regulate the ac-
tivities of MMP-1, ‑2, and -9 from natural re-
sources is one of the key steps in delaying skin
aging.
Rhodiola rosea L. (Crassulaceae), an herbaceous
plant, is used in Asian and Eastern European tra-
ditional medicines for its pressure-reducing [4],
neurosystem-stimulating [5], fatigue-removing
[6], hypobaropathy-preventing [7], antidepres-
sive [7], anticancer [8], antiaging [9], cardiovascu-
lar-protective [10], and hepatoprotective effects
[11]. Chemical investigations on this plant have
revealed many chemical entities, including phe-
nolic acids [12], phenolethanoids [13], phenyl-
propenoids [14], flavonoids [15], monoterpenes
[4], and glycosides [16]. In a preliminary biologi-
cal evaluation, crude extracts of R. rosea roots ex-
hibited inhibitory activities toward MMP-2 and
collagenase at a concentration of 100 µg/mL [17].
An investigation of the active principles of this
plant was thus undertaken by using a bioassay-
guided method. Of the tested water, n-butanol,
and ethyl acetate layers, the ethyl acetate layer



Table 1 13 C (125MHz) and 1 H NMR (500MHz) data for compound 1 (in
CD3OD).

1

Position 13C 1H

1 94.3 6.24 (1 H, d, J = 8.3 Hz)

2 72.6 5.58 (1 H, dd, J = 8.3, 9.6 Hz)

3 74.5 5.91 (1 H, t, J = 9.6 Hz)

4 70.5 5.63 (1 H, t, J = 9.6 Hz)

5 74.7 4.40 (1 H)a

6 63.7 4.41 (1 H)a

4.51 (1 H, d, J = 10.3 Hz)

1′ 120.2

2′, 6′ 111.1 7.05 (2 H, s)

3′, 5′ 147.0

4′ 141.2

7′ 166.7

1′′ 120.7

2′′, 6′′ 110.9 6.95 (2 H, s)

3′′, 5′′ 146.8

4′′ 140.8

7′′ 167.5

1′′′ 120.7

2′′′, 6′′′ 110.8 6.80 (2 H, s)

3′′′, 5′′′ 146.7

4′′′ 140.6

Fig. 1 Structures of compounds 1–3 isolated from the roots of R. rosea.
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was the most potent. The subsequent isolation and identification
of bioactive components was focused on this layer and led to the
isolation and characterization of three new compounds (1–3;
l" Fig. 1) and twenty-four known compounds (4–27). The isola-
tion and structural elucidation of the previously unreported
compounds are described in this paper along with their bioactiv-
ities.
7′′′ 167.8

1′′′′ 121.5

2′′′′, 6′′′′ 133.6 7.78 (2 H, d, J = 8.7 Hz)

3′′′′, 5′′′′ 116.7 6.75 (2 H, d, J = 8.7 Hz)

4′′′′ 163.3

7′′′′ 167.1

1′′′′′ 121.4

2′′′′′, 6′′′′′ 110.8 7.10 (2 H, s)

3′′′′′, 5′′′′′ 146.9

4′′′′′ 140.4

7′′′′′ 168.4

a Signals without multiplicity were overlapped and picked up from the HSQC spectrum
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Results and Discussion
!

An ethanolic extract of the roots of R. rosea was partitioned in a
preliminary manner to give an ethyl acetate soluble layer. Flash
column separation of this layer over silica gel afforded three pre-
viously unreported chemical entities (1–3) along with twenty-
four known compounds. The known compounds were identified
to be methyl 4-hydroxybenzoate (4) [18], β-sitosterol (5) [19],
(Z)-2-methyl-6-oxo-2-hepten-1-ol (6) [20], gallic acid (7) [21],
4-hydroxyphenyl-2-ethyl β-D-glucopyranoside (8) [22], tyrosol
(9) [23], methyl gallate (10) [24], p-coumaric acid (11) [25], caf-
feic acid (12) [25], aspergillol B (13) [26], 2R,3R-dihydrokaemp-
ferol (14) [27], (E)-2-methyl-6-oxo-2-hepten-1-ol (15) [17],
1,2,6-tri-O-galloyl-β-D-glucopyranonoside (16) [28], 1,2,3,6-tet-
ra-O-galloyl-β-D-glucopyranonoside (17) [28], p-hydroxyphe-
nethyl alcohol 1-O‑D-(6′′-O-galloyl)-glucopyranoside (18) [29],
herbacetin 7-O-α-L-rhammopyranoside (19) [30], kaempferol 3-
O-α-L-rhammopyranoside (20) [30], epicatechin-3-O-gallate (21)
[31], 1,1-dimethylprop-2-en-1-yl-β-D-glucopyranoside (22)
[20], 3-methyl-but-2-en-1-yl-β-D-glucopyranoside (23) [32],
(Z)-creoside I (24) [33], creoside III (25) [33], salidroside (26)
[34], and icariside D2 (27) [35] based on spectroscopic data anal-
ysis and comparison to the literature.
Compound 1, obtained as amorphous white powder, had a for-
mula of C41H32O24, as determined using 13C NMR (l" Table 1), as
well as a pseudo-molecular ion [M – H]− at m/z 907.1241 in neg-
ative ion high-resolution electrospray ionization mass spectrom-
etry (HR-ESIMS). IR absorption bands of 1 showed a conjugated
ester carbonyl (1702 cm−1) along with aromatic functionalities
(1609 and 1536 cm−1). In the 1H NMR spectrum of 1 (l" Table 1),
signals at δH 6.24 (1 H, d, J = 8.3 Hz, H-1), 5.58 (1 H, dd, J = 8.3,
9.6 Hz, H-2), 5.91 (1 H, t, J = 9.6 Hz, H-3), 5.63 (1 H, t, J = 9.6 Hz, H-
4), 4.40 (1 H, H-5), 4.41 (1 H, H-6a), 4.51 (1 H, d, J = 10.3 Hz, H-6b),
7.05 (2 H, s, H-2′, ‑6′), 6.95 (2 H, s, H-2′′, ‑6′′), 6.80 (2 H, s, H-2′′′,
‑6′′′), and 7.10 (2 H, s, H-2′′′′′, ‑6′′′′′) were attributable to a β-D-
glucopyranoside bearing four galloyl groups at C-1, ‑2, ‑3, and C-
6 via ester linkages; this conclusionwas corroborated by the large
mutual coupled J values of H-1–H-5 and heteronuclear long-
range correlations in the heteronuclear multiple-bond correla-
tion (HMBC) experiment (l" Fig. 2A). Two additional mutual
coupled resonances at δH 6.75 (2 H, d, J = 8.7 Hz) and 7.78 (2 H, d,
J = 8.7 Hz) were characteristic signals for p-hydroxybenzoyl lo-
cated at CO-4 as evidenced by a cross-peak of H-4/7′′′′ in the
HMBC spectrum. Accordingly, 1 was determined as shown and
named 1,2,3,6-tetra-O-galloyl-4-O‑p-hydroxybenzoyl-β-D-glu-
copyranoside.
Compound 2 was isolated as amorphous white powder with the
molecular formula C14H24O7, as determined by positive ion HR-
ESIMS, and showed an [M + Na]+ ion at m/z 327.1428 (calcd. for
C14H24O7Na, 327.1420). Conspicuous absorptions at 3389 and
1689 cm−1 in the IR spectrum of 2 indicated the presence of hy-
droxyl and ketone functionalities, respectively. The 1H NMR
(l" Table 2) spectrum coupled with the correlation spectroscopy
(COSY) spectrum of 2 showed signals at δH 4.22 (1 H, d,
J = 8.0 Hz, H-1′), 3.18 (1 H, dd, J = 8.0, 8.5 Hz, H-2′), 3.33 (1 H, t,
J = 8.5 Hz, H-3′), 3.27 (1 H, t, J = 8.5 Hz, H-4′), 3.22 (1 H, m, H-5′),
3.65 (1 H, dd, J = 5.5, 11.5 Hz, H-6′a), and 3.85 (1 H, dd, J = 2.0,
11.5 Hz, H-6′b), indicating a β-D-glucopyranoside moiety. Fur-
ther, the 1H, 13C NMR, COSY, and heteronuclear multiple-quan-
tum correlation (HMQC) spectra of 2 indicated the presence of
Lee T-H et al. Anti-MMP‑2 Activity and… Planta Med 2016; 82: 698–704



Fig. 2 Selected HMBC spectra of compounds 1 (A) and 2 (B).
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two methyls [δH 2.12 (3 H, s, H3-7) and 1.69 (3 H, s, H3-8)] in the
residual aglycone part, three methylenes [δH germinal coupled
4.02 and 4.18 (each 1H, d, J = 11.5 Hz, H2-1), vicinal coupling
[2.28 (2 H, m, H2-4) and 2.53 (2 H, t, J = 7.0 Hz, H2-5)], and an ole-
finic methine [δH 5.42 (1 H, t, J = 6.5 Hz, H-3)]. In the HMBC spec-
trum of 2 (l" Fig. 2B), cross-peaks of δH 1.69 (H3-8)/δC 75.6 (C-1),
133.9 (C-2) and 128.3 (C-3), δH 5.42 (H-3)/δC 23.0 (C-4) and 43.7
2 3

Position 13C 1H 13C

1 75.6 4.02 (1 H, d, J = 11.5 Hz) 60.0

4.18 (1 H, d, J = 11.5 Hz)

2 133.9 134.6

3 128.3 5.42 (1 H, t, J = 6.5 Hz) 127.2

4 23.0 2.28 (2 H, m) 23.5

5 43.7 2.53 (2 H, t, J = 7.0 Hz) 38.9

6 211.4 66.5

7 29.8 2.12 (3 H, s) 22.1

8 14.1 1.69 (3 H, s) 20.2

1′ 102.6 4.22 (1 H, d, J = 8.0 Hz)

2′ 75.1 3.18 (1 H, dd, J = 8.0, 8.5 Hz)

3′ 78.2 3.33 (1 H, t, J = 8.5 Hz)

4′ 71.7 3.27 (1 H, t, J = 8.5 Hz)

5′ 77.9 3.22 (1 H, m)

6′ 62.8 3.65 (1 H, dd, J = 5.5, 11.5 Hz)

3.85 (1 H, dd, J = 2.0, 11.5 Hz)

Lee T-H et al. Anti-MMP‑2 Activity and… Planta Med 2016; 82: 698–704
(C-5), δH 2.12 (H3-7)/δC 211.4 (C-6) and 43.7 (C-5) and δH 4.22 (H-
1′)/δC 75.6 (C-1) indicated that the aglycone of 2 was connected
with the C-1′ of β-D-glucopyranoside via an ether linkage to form
creoside I. The configuration of Δ2 was determined to be in E form
owing to the δC 14.1 of C-8 in 2 in contrast with δC 21.9 of C-8 in
(Z)-creoside I (25). Consequently, the structure of 2 was eluci-
dated as shown and the compound was named (E)-creoside I.
Compound 3 was obtained as oil with an optical rotation [α]D25 =
− 42.2° (c 0.23, MeOH). Comparison of the 1H and 13C NMR spec-
tra of 3 and 2 revealed the major distinctive differences to be pri-
mary alcohol (δC 60.0, C-1), a secondary hydroxyl group (δC 66.5,
C-6), and Z form Δ2 (δC 20.2, C-8) in 3 as opposed to the ether
group (δC 75.6, C-1), ketone group (δC 211.4, C-6), and E form Δ2

(δC 14.1, C-8) in 2, respectively. The configuration of the Δ2 in 3
was also verified by a nuclear Overhauser effect (NOE) en-
hancement signal of H3-8 at δH 1.75 after radiation of H-3 at δH
5.27, which indicated a Z form double bond. The chirality of C-6
was determined to be R by comparing the optical rotation of 3,
[α]D25 − 42.2°, with that of (R)-6-methylhept-5-en-2-ol, [α]D
− 14.5° [36]. Thus, compound 3 was assigned as shown and
named (R,Z)-2-methylhept-2-ene-1,6-diol.
In the MMP inhibitory activity assay, 1,2,3,6-tetra-O-galloyl-4-O-
p-hydroxybenzoyl-β-D-glucopyranoside (1) inhibitedMMP-2 ac-
tivity with an IC50 of 16.3 ± 1.6 µM, while its analog 1,2,3,6-tetra-
O-galloyl-β-D-glucopyranonoside (17) inhibited MMP-2 with an
IC50 value of 23.0 ± 4.8 µM. In the collagenase inhibitory activity
assay, the effects of 1 and 17 at concentrations of both 20 and
40 µM were significant and more potent than those of the posi-
tive control, 1,10-phenanthroline (l" Table 3). When a concentra-
tion of 20 µM of compound 17was applied, an inhibitory activity
of over 50% could be achieved. Owing to its promising activity in
the enzymatic assay and in an attempt to realize whether 17
could penetrate from the epidermal layer into the basal and der-
mal layers of human skin or not, a transdermal penetration assay
of 17 was performed using nude and white mouse skins. The
nude mouse skinwith sparse hair follicles mimicked human skin,
and the white mouse skin with compact hair follicles was used
for comparison. The transdermal penetration percentages of 17
in the nude mouse skin and the white mouse skin were 27.8%
and 74.8% (l" Table 4), respectively, in 24 h as determined by us-
ing LC‑MS. In the same conditions, the transdermal penetration
percentage of genistein, a positive control used in this study,
was 3.7%. Compound 17 was thus speculated to be able to pene-
Table 2 13 C (125MHz) and 1 H
NMR (500MHz) data for com-
pounds 2 and 3 (in CD3OD).

1H

4.04 (1 H, d, J = 12.0 Hz)

4.08 (1 H, d, J = 12.0 Hz)

5.27 (1 H, t, J = 7.0 Hz)

2.11 (2 H, m)

1.45 (1 H, m)

3.70 (2 H, m)

1.14 (3 H, d, J = 6.5 Hz)

1.75 (3 H, s)
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Table 3 The inhibitory effects of compounds 1 and 17 on collagenase activity.

Samples 1 17 Positive control

20 µM 40 µM 20 µM 40 µM 20 µM 40 µM

Inhibitory effectiveness (%) 23.51 ± 2.81* 47.50 ± 2.90 52.12 ± 4.30*** 61.73 ± 1.98** 12.80 ± 5.40 38.41 ± 1.43

The percentual inhibition is shown as mean ± SD of three independent experiments. * P < 0.05, ** p < 0.01, and *** p < 0.0001 compared with the positive control group. Positive

control: 1,10-phenanthroline

Table 4 Results of the transder-
mal penetration test of compound
17 through nude mice and white
mice skins.

Sample mice The amount of 17 applied

onto the skins (µg)

Average (µg) Penetration percentage of 17

into the mouse skins (%)
Nudemice 1. 1.42 1.17 ± 0.21 27.8

2. 1.02

3. 1.09

White mice 4. 8.82 6.07 ± 2.43 74.8

5. 4.23

6. 5.16
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trate from the epidermal layer into the basal and dermal layers of
human skin to inhibit the activity of MMP-2 and collagenase, and
to mitigate skin aging.
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Materials and Methods
!

General experimental procedures
Optical rotations were measured on a JASCO P-1020 polarimeter.
1H and 13C NMR were performed with a Bruker Avance DRX-500
spectrometer. Low- and high-resolution mass spectra were ob-
tained using an ABI API 4000 Q-TRAP ESI‑MS and a Waters LCT
Premier™ XE HR‑ESI‑MS, respectively. IR spectra were recorded
on a JASCO FT/IR 4100 spectrometer.

Chemicals and reagents
HPLC grade solvents, n-hexane, ethyl acetate, methanol, and ace-
tonitrile were purchased from J.T. Baker. Epigallocatechin gallate,
genistein, and 1,10-phenanthroline (all purities > 95%) were pur-
chased from Sigma-Aldrich.

Plant materials
Dried roots of R. rosea were purchased from Scientific Pharma-
ceutical Elite Company (Batch No. 106), Taipei, Taiwan, on Sep-
tember 8, 2009. A voucher specimen (No. TMU090908) was iden-
tified by Hsiu-Wen Huang, Taiwan Endemic Species Research In-
stitute, ChiChi, Taiwan, and deposited at the Institute of Pharma-
cognosy, Taipei Medical University, Taipei, Taiwan.

Extraction and isolation
Dried roots (10.0 kg) of R. rosea were smashed and extracted
three times with 40 L of ethanol, which was filtered and rotary
evaporated to give a black residue (1758 g). This residue was then
suspended in H2O (3 L) and partitioned with an equal volume of
ethyl acetate three times. The ethyl acetate layer was evaporated
to dryness under vacuum (415 g). Subsequently, the dried ethyl
acetate layer (250 g) was mixed with 375 g of silica gel (70–230
mesh, Merck), and was loaded onto a conditioned open column
packedwith 3550 g of silica gel and eluted via a stepwise gradient
method by using mixtures of n-hexane, ethyl acetate, and meth-
anol. Five hundred ml were collected for each fraction and ana-
lyzed by TLC. TLC was performed on silica gel 60 F254 plates
(Merck) by using mixtures of n-hexane-ethyl acetate for develop-
ment, and spots were detected by spraying with vanillin-sulfuric
acid followed by heating. Then, all fractions were combined into
six portions (I–VI) according to the results of the TLC analyses;
they were then redissolved in a minimum volume of the n-hex-
ane/ethyl acetate mixtures for subsequent HPLC analysis. Portion
II eluted by n-hexane/ethyl acetate (95:5) was purified by
performing semipreparative HPLC (Hibar® Fertigsäule, 10 ×
250mm) using n-hexane/ethyl acetate (96:4) as the eluent at a
flow rate of 3mL/min to afford 6 (4.2mg, tR = 19.8min), 3
(6.1mg, tR = 21.2min), 5 (32mg, tR = 23.5min), and 7 (79mg,
tR = 28.0min). The same portion was purified by performing
semipreparative HPLC (Phenomenex® Luna, 10 × 250mm) using
n-hexane/ethyl acetate (99:1) as the eluent at a flow rate of
3mL/min to afford 4 (36mg, tR = 32.5min). Portion III, eluted by
n-hexane/ethyl acetate (90:10), was purified by performing
semipreparative HPLC (Phenomenex® Luna, 10 × 250mm) using
n-hexane/acetone (99:1) as the eluent at a flow rate of 3mL/
min to afford 8 (1.7 g, tR = 19.3min). Portion IV, eluted by n-hex-
ane/ethyl acetate (80:20), was purified by performing semipre-
parative HPLC (Phenomenex® Luna, 10 × 250mm) using n-hex-
ane/ethyl acetate (85 :15) as the eluent at a flow rate of 3mL/
min to afford 15 (19mg, tR = 24.4min), 12 (11mg, tR = 26.9min),
9 (25mg, tR = 33.8min), 10 (31mg, tR = 37.0min), and 11 (24mg,
tR = 42.5min). The same portion was purified using the same col-
umn by using n-hexane/ethyl acetate (78:22) as the eluent at a
flow rate of 3mL/min to obtain 14 (10mg, tR = 20.1min) and 13
(22mg, tR = 24.6min). The same portionwas purified by the same
column using n-hexane/ethyl acetate/acetone (85:10:10) as the
eluent at a flow rate of 3mL/min to obtain 19 (25mg, tR =
13.2min), 17 (55mg, tR = 16.3min), 16 (132mg, tR = 21.8min),
and 18 (39mg, tR = 25.6min). Portion V, eluted by n-hexane/ethyl
acetate (60:40), was purified by performing semipreparative
HPLC (Hibar® Fertigsäule, 10 × 250mm) using n-hexane/ethyl
acetate/acetone (68:27:5) as the eluent at a flow rate of 3mL/
min to afford 20 (5.3 g, tR = 10.2min), 22 (63mg, tR = 20.0min),
21 (84mg, tR = 22.0min), and 23 (33mg, tR = 26.5min). The same
portion was purified by performing semipreparative HPLC (Hi-
bar® Fertigsäule, 10 × 250mm) using n-hexane/ethyl acetate
(72:28) as the eluent at a flow rate of 3mL/min to afford 2
(24mg, tR = 24.3min), 24 (4.6mg, tR = 32.3min), and 25 (3.3mg,
tR = 38.7min). Portion VI, eluted by n-hexane/ethyl acetate
(40:60), was purified by performing semipreparative HPLC (Hi-
bar® Fertigsäule, 10 × 250mm) using n-hexane/ethyl acetate
Lee T-H et al. Anti-MMP‑2 Activity and… Planta Med 2016; 82: 698–704
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(53:47) as the eluent at a flow rate of 3mL/min to afford 1 (5mg,
tR = 13.2min), 26 (11.4mg, tR = 21.5min), and 27 (3.6mg,
tR = 30.2min).

Identification of isolated compounds
All the isolated compounds were identified by interpreting their
1H, 13C, and 2DNMR spectra, including COSY, NOESY, HMQC, and
HMBC spectra, which were further supported by IR, LR-, HR‑MS,
and optical rotation data.
1,2,3,6-Tetra-O-galloyl-4-O‑p-hydroxybezoyl-β‑D-glucopyrano-
side (1): Amorphous white powder; [α]D24 + 38.75 (c 0.08, CH3OH);
IR (neat) νmax 3375, 1702, 1609, 1536; negative HRESIMS m/z
907.1241 [M – H]− (calcd. for C41H31O24, 907.1205); for 1H and
13C NMR data see l" Table 1.
(E)-Creoside I (2): Amorphous white powder; [α]D25 − 58.0 (c 0.05,
CH3OH); IR (neat) νmax 3389, 1698; ESIMS m/z 327.3 [M + Na]+;
for 1H and 13C NMR data see l" Table 2.
(R,Z)-2-Methylhept-2-ene-1,6-diol (3): Colorless oil; [α]D25 − 42.2 (c
0.23, CH3OH); ESIMS m/z 166.2 [M + Na]+; for 1H and 13C NMR
data see l" Table 2.

Matrix metalloproteinase-2 inhibitory activity assay
To evaluate the MMP-2 inhibitory activity of the galloyl deriva-
tives 1, 7, and 16–19, gelatin zymography was conducted [37].
Briefly, HT1080 cell suspension (5 × 105 cells/mL) was placed in
24-well cell culture plates for 24 h of incubation at 37°C. Subse-
quently, the cells were treated with the vehicle (DMSO), com-
pounds 1, 7, and 16–19 (10, 20, 50, and 100 µM), or epigallocate-
chin gallate (EGCG, 100 µM) as a positive control followed by an
incubation at 37°C for 24 h. The purity of all of the tested com-
pounds was higher than 95% as checked by HPLC. Supernatants
were mixed with a sample-loading dye (the composition was
500mM Tris-HCl, 25% glycerol, 10% SDS, and 0.32% bromophe-
nol blue; pH 6.8) in a volume ratio of 1:2, followed by polyacryl-
amide gel electrophoresis (PAGE). The PAGE gel contained 1% gel-
atin and 10% polyacrylamide, where gelatin acted as a substrate
for MMP-2. After electrophoresis, the gel was washed twice with
2.5% Triton X-100 at 24°C for 30min to remove the dye and SDS.
Afterwards, the gel was incubated with a reacting buffer (50mM
Tris-base, 200mMNaCl, 5mM CaCl2, and 0.02% Brij 35; pH 7.5) at
37°C for 24 h. A fixing solution (7% acetic acid and 40% metha-
nol) was subsequently applied to the gel for 30min, and the gel
was stained with Brilliant Blue G-Colloidial, and then destained
with a destain solution (10% acetic acid and 40% methanol). Fi-
nally, the gelatinolytic zonewas analyzed using an image analysis
system (Vilber Lounmat). The analysis software used was Bio-1
version 99. The formula used to determine the inhibitory effec-
tiveness of the compounds was as follows: [(the values of blank
– the values of experimental group)/the values of blank] × 100%.

Collagenase inhibitory activity assay
DQ™ (EnzChek Gelatinase/Collagenase Assay Kit, E-12055) is a
type of fluorescent material that can bond with gelatin to form
DQ-gelatin. Since the capability of collagenase type IV to induce
gelatin hydrolysis has been demonstrated, DQ™-gelatin can be a
substrate for collagenase. Thus, the principle of this experiment
was to measure the activity of collagenase by determining the
emission intensity of DQ fluorescence because the chemical bond
between DQ-gelatin could be enzymatically digested by collage-
nase. The fluorescence intensity can be measured using a flores-
cence microplate reader equipped with standard fluorescein fil-
ters. The fluorescence absorption and emission wavelengths for
Lee T-H et al. Anti-MMP‑2 Activity and… Planta Med 2016; 82: 698–704
the digestion product from DQ-gelatin and the DQ collagen sub-
strate were 495 nm and 515 nm, respectively. Therefore, a fluo-
rescence emission intensity higher than that of the blank at a
wavelength of 515 nm is an indicator of collagenase activity. In
other words, the resulting fluorescence emission intensity would
decrease at 515 nm if the collagenase inhibitors, compounds 1
and 17, were applied. The results of the collagenase assay are pre-
sented as mean ± SD values.

Transdermal penetration test
To evaluate the effectiveness of a topical agent of compound 17
within a larger amount, a transdermal penetration test was per-
formed. The apparatus used for this experiment was a Franz-type
diffusion cell, consisting of a set of vertical double-diffusion and
detachable glass containers. The upper donor chamber of the cell
is a hollow cylinder for sample injection, the bottom contact sur-
face of the donor chamber is provided for close integration. The
lower receptor chamber is a double-layered hollow cylindrical
diffusion container, of which the inner layer is made of glass, con-
taining the fluid for sampling; the outer layer of the receptor
chamber is filled with circulating water, maintained at 37 ± 1°C
to simulate the human body. The contact area between the donor
chamber and the receptor chamber was 0.785 cm2 (the actual
penetration area), and nude or white mouse (n = 3) skin (epider-
mis facing upwards) was fixed using metal clips to serve as the in
vitro transdermal penetration barrier. The experimental method
is presented below. First, compound 17 was dissolved in 30wt%
propylene glycol aqueous solution, followed by a transfer of
0.5mL of aqueous solution (containing 0.25mg) of compound 17
into the donor chamber of the Franz-type diffusion cell. The top
of the open-ended donor chamber was covered tightly with Par-
afilm®, and the inner receptor chamber was filled with 5.5mL of
the buffer solution (30wt% ethanol and phosphate buffer solu-
tion; pH 7.4), under continuously stirring at 600 rpm. The buffer
solutionwas sampled (0.3mL) at time points of 1, 2, 4, 6, 8, 10, 12,
24, 36, and 48 h, and was replaced with an equal volume (0.3mL)
of the buffer solution to maintain the same volume of fluid in the
diffusion cell. Finally, the accumulated compound 17 in the solu-
tion in the receptor chamber was analyzed by liquid chromatog-
raphy-tandem mass spectrometry (LC‑MS/MS), and the results
represented the amount of compound 17 that could penetrate
through the skin and reach the blood vessels. After completing
this experimental step, deionized water was used to wash com-
pound 17 off the nude andwhite mouse skin surfaces. Thereafter,
the skins were taken out of the apparatus and trimmed to obtain
a circle with a diameter equal to that of the donor chamber by us-
ing surgical scissors, and the weight of the sample was recorded.
The skin samples were then homogenized with 1mL of alcohol at
300 rpm for 5min, followed by centrifugation at 10000 rpm for
5min. The supernatant was filtered using 0.45 µm PVDF and the
amount of compound 17 in the skin was quantified by perform-
ing LC‑MS. Genistein was used as a positive control following the
same method.

Transdermal penetration analysis using
high-performance liquid chromatography
tandem mass spectrometry
The HPLC‑MS/MS apparatus used consisted of an Agilent 1100
HPLC system coupled to an Applied Biosystems 4000 triple quad-
rupole mass spectrometer with an electrospray ionization source
for the simultaneous detection of 1,2,3,6-tetra-O-galloyl-β-D-
glucopyranoside (17) and genistein. The chromatographic sepa-
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ration was performed on a C18 Phenomenex column (100 ×
4.6mm, 5 µm). The injection volume was 10 µL. The flow rate
was set to 0.5mL/min and the gradient used was as follows
(where A = water and B = acetonitrile): t = 0–1.2min, A:B (80:
10 v/v); t = 1.2–2.5min, A:B (80:10 v/v); t = 2.5–3.5min, A:B
(80:10 v/v) to A:B (10:80 v/v); t = 3.5–6.5min, A :B (80:10 v/v).
Mass detection and quantification were performed in the nega-
tive mode using multiple reaction monitoring (MRM) of the pre-
cursor/product ion pair at m/z 787/617 and 269/133 for com-
pound 17 and genistein, respectively. The optimized parameters
for mass detection were as follows: curtain gas, 10 psi; nebulizer
gas (Gas 1), 60 psi; auxiliary gas (Gas 2), 65 psi; and turbo ion
spray temperature, 425°C. Data acquisition and processing were
performed using Analyst 1.4 software (AB SCIEX).

Statistical analysis
The experimental results are expressed as mean ± standard error.
Data were assessed using the Student-Newman-Keuls test and
p < 0.05, p < 0.01, and p < 0.001 was considered significant.

Supporting information
Spectral data of compounds 1–3 are available as Supporting In-
formation.
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