Subscribe to RSS
DOI: 10.1055/s-0029-1219164
Concurrent α-Iodination and N-Arylation of Cyclic β-Enaminones
Publication History
Publication Date:
22 December 2009 (online)

Abstract
A variety of N-substituted 3-aminocyclohex-2-enones were converted into the corresponding N-arylated α-iodo enaminones in high yields via concurrent α-iodination and N-arylation mediated by ArI(OAc)2. A mechanism is postulated to account for the reaction differences between the cyclic and the acyclic β-enaminones, which undergo predominant α-acetoxylation under the same reaction conditions.
Key words
polyvalent iodine compounds - α-iodination - PIDA - α-iodo enaminones - 3-aminocyclohex-2-enones
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Zhdankin VV.Stang PJ. Chem. Rev. 2008, 108: 5299Reference Ris Wihthout Link - 1b
Stang PJ. J. Org. Chem. 2003, 68: 2997Reference Ris Wihthout Link - 1c
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523Reference Ris Wihthout Link - 1d
Stang PJ.Zhdankin VV. Chem. Rev. 1996, 96: 1123Reference Ris Wihthout Link - 1e
Richardson RD.Wirth T. Angew. Chem. Int. Ed. 2006, 45: 4402Reference Ris Wihthout Link - 1f
Wirth T. Angew. Chem. Int. Ed. 2005, 44: 3656Reference Ris Wihthout Link - 1g
Moriarty RM.Prakash O. Hypervalent Iodine in Organic Chemistry: Chemical Transformations Wiley-Interscience; New York: 2008.Reference Ris Wihthout Link - 1h
Moriarty R. J. Org. Chem. 2005, 70: 2893Reference Ris Wihthout Link - 1i
Varvoglis A. Hypevalent Iodine in Organic Synthesis Academic Press; London: 1997.Reference Ris Wihthout Link - 1j
Varvoglis A. The Organic Chemistry of Polycoordinated Iodine VCH Publishers; New York: 1992.Reference Ris Wihthout Link - 1k
Varvoglis A. Tetrahedron 1997, 53: 1179Reference Ris Wihthout Link - 2a
Du Y.Liu R.Linn G.Zhao K. Org. Lett. 2006, 8: 5919Reference Ris Wihthout Link - 2b
Li X.Du Y.Liang Z.Li X.Pan Y.Zhao K. Org. Lett. 2009, 11: 2643Reference Ris Wihthout Link - 2c
Yu W.Du Y.Zhao K. Org. Lett. 2009, 11: 2417Reference Ris Wihthout Link - 2d
Tellitu I.Serna S.Herrero MT.Domínguez E.Sanmartin R. J. Org. Chem. 2007, 72: 1526Reference Ris Wihthout Link - 2e
Huang J.Liang Y.Pan W.Yang Y.Dong D. Org. Lett. 2007, 48: 5345Reference Ris Wihthout Link - 2f
Fan R.Wen F.Qin L.Pu D.Wang B. Tetrahedron Lett. 2007, 48: 7444Reference Ris Wihthout Link - 2g
Correa A.Tellitu I.Domínguez E.Sanmartin R. J. Org. Chem. 2006, 71: 3501Reference Ris Wihthout Link - 2h
Aggarwal R.Sumran G.Saini A.Singh S. Tetrahedron Lett. 2006, 62: 11100Reference Ris Wihthout Link - 2i
Ciufolini M.Braun N.Canesi S.Ousmer M.Chang J.Chai D. Synthesis 2007, 3759Reference Ris Wihthout Link - 2j
Shigehisa H.Takayama J.Honda T. Tetrahedron Lett. 2006, 47: 7301Reference Ris Wihthout Link - 2k
Braun N.Ousmer M.Bray J.Bouchu D.Peters K.Peters E.Ciufolini M. J. Org. Chem. 2000, 65: 4397Reference Ris Wihthout Link - 4a
Krafft M.Cran J. Synlett 2005, 1263Reference Ris Wihthout Link - 4b
Campos P.Tan C.Rodriguez M. Tetrahedron Lett. 1995, 36: 5257Reference Ris Wihthout Link - 4c
Kozmin S.Iwama T.Huang Y.Rawal V. J. Am. Chem. Soc. 2002, 124: 4628Reference Ris Wihthout Link - 4d
Campos P.Arranz J.Rodriguez M. Tetrahedron Lett. 1997, 37: 8397Reference Ris Wihthout Link - 4e
Sakamoto T.Kondo Y.Yamanaka H. Synthesis 1984, 252Reference Ris Wihthout Link - 4f
Habib N.Kappe T. J. Heterocycl. Chem. 1984, 21: 385Reference Ris Wihthout Link - 4g
Matsuo K.Ishida S.Takuno Y. Chem. Pharm. Bull. 1994, 42: 1149Reference Ris Wihthout Link - 5a
Negishi E. J. Organomet. Chem. 1999, 576: 179Reference Ris Wihthout Link - 5b
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457Reference Ris Wihthout Link - 5c
Yoshioka N.Lahti PM.Kaneko T.Kuzumaki Y.Tsuchida E.Nishide H. J. Org. Chem. 1994, 59: 4272Reference Ris Wihthout Link - 5d
Farina V. Pure Appl. Chem. 1996, 68: 73Reference Ris Wihthout Link - 6a
Papoutsis I.Spyroudis S.Varvoglis A. Tetrahedron Lett. 1996, 37: 913-916Reference Ris Wihthout Link - 6b
Papoutsis I.Spyroudis S.Varvoglis A.Raptopoulou C. Tetrahedron 1997, 53: 6097-6112Reference Ris Wihthout Link - 7
Rao VVR.Wentrup C. J. Chem. Soc., Perkin Trans. 1 2002, 1232 - 8a
CaH2-dried EtOAc, THF, MeCN, and CH2Cl2 were also tested as solvents, but were not superior to DCE.
Reference Ris Wihthout Link - 8b
The conversion was very slow at 40 ˚C.
Reference Ris Wihthout Link - 9a
Kazmierczak P.Skulski L. Synthesis 1998, 1721Reference Ris Wihthout Link - 9b
Kazmierczak P.Skulski L.Kraszkiewicz L. Molecules 2001, 6: 881Reference Ris Wihthout Link - 10 For a previous example relative
to this:
Zhang PF.Chen ZC. J. Chem. Res., Synop. 2001, 150 - 11 For the evidence of assigning Z-configuration for such acyclic β-enaminone
compounds, see:
Ramtohul YK.Chartrand A. Org. Lett. 2007, 9: 1029 - 12 For a similar nucleophilic substitution
process in which water was acted as nucleophile, see:
Moriarty RM.Berglund BA.Penmasta R. Tetrahedron Lett. 1992, 33: 6065 - 13 For a similar migration process
relative to iodine-oxygen 1,4-dipoles, see:
Takaku M.Hayashi Y.Nozaki H. Tetrahedron 1970, 26: 1243
References and Notes
Compound 3a
Crystallized
in the monoclinic space group P2 (1)/c with cell dimensions: a = 10.497
(2) Å, b = 13.607
(3) Å, c = 11.987 (2) Å, α = 90˚, β = 114.36
(3)˚, γ = 90˚, V = 1559.9
(5) ų, D
c
= 1.657
g/cm³, Z = 4.
CCDC: 753753.
General Procedure
for α-Iodination and N-Arylation of β-Enaminones
To
a solution of substrate 1 (1.0 mmol) in
dried DCE (10 mL) was added dropwise a solution of aryliodine diacetate 2 (1.3 mmol) in dried DCE (10 mL) at 60 ˚C
under nitrogen atmosphere. After the addition, the reaction mixture
was stirred at this temperature until the conversion was complete as
indicated by TLC. Then the mixture was cooled to r.t., treated with
sat. aq NaHCO3 (40 mL) and extracted with CH2Cl2 (3 × 20
mL). The combined organic layer was dried over Na2SO4 and
evaporated under reduced pressure to remove the solvent. The residue
was purified by column chromatography using a mixture of PE and
EtOAc as eluent to afford the product.
Compound 3a: yellow solid, mp 106-108 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 7.32 (t, J = 7.9 Hz,
4 H), 7.14 (t, J = 7.4 Hz,
2 H), 7.02 (d, J = 7.7
Hz, 4 H), 2.75-2.65 (m, 2 H), 2.58 (t, J = 6.0
Hz, 2 H), 2.04-1.91 (m, 2 H). ¹³C
NMR (100 MHz, CDCl3): δ = 193.09, 166.95,
145.20, 129.52, 125.45, 125.22, 95.80, 37.54, 34.04, 21.38. ESI-LRMS: m/z = 390.2 [M + H+].
Compound 5a: yellow solid, mp 102-104 ˚C. ¹H
NMR (400 MHz, DMSO): δ = 7.51 (dd, J = 4.8, 2.5
Hz, 3 H), 7.35 (dd, J = 7.7,
1.9 Hz, 2 H), 2.43 (s, 3 H), 2.35 (s, 3 H), 2.22 (s, 3 H). ESI-LRMS: m/z = 271.9 [M + K+].
The spectroscopic data for all the new compounds could be found
in the Supporting Information.