Horm Metab Res 2007; 39(11): 775-776
DOI: 10.1055/s-2007-992126
Editorial

© Georg Thieme Verlag KG Stuttgart · New York

The Dual Substrate Specificity of Aldehyde Oxidase 1 for Retinal and Acetaldehyde and its Role in ABCA1 Mediated Efflux

J. Graessler 1 , S. Fischer 1
  • 1Department of Internal Medicine, Carl Gustav Carus Medical School, University of Technology, Dresden, Germany
Further Information

Publication History

received 18.09.2007

accepted 18.09.2007

Publication Date:
09 November 2007 (online)

The high triglyceride, low high-density-lipoprotein (HDL) syndrome, visceral obesity, hypertension, and insulin resistance with or without hyperglycemia are the hallmarks of type 2 diabetes mellitus (T2DM) and the metabolic syndrome (MS). Patients with T2DM or MS are at high risk for vascular disease, myocardial infarction and stroke [1]. Insulin resistance, as a major determinant of disease progression, is associated with TNF-α[2] and MCP-1 expression in visceral fat. MCP-1 expression results in macrophage accumulation in visceral fat and adipokine secretion [3]. Furthermore, insulin resistance is associated with impaired lipoprotein lipase (LPL) expression [4], enhanced secretion of apoB containing lipoproteins associated with hypertriglyceridemia [5] and activation of the renin/angiotensin/aldosterone system leading also to elevated blood pressure [6]. While the adipokine adiponectin seems not to be causally related to insulin resistance in healthy subjects [7] haplotypes in the adiponectin promoter are associated with increased risk of T2DM [8]. Obesity suppresses adiponectin secretion [9] and serum adiponectin correlates positively with HDL cholesterol [7] [10] and negatively with plasma triglycerides [7]. A key function of HDL in the process of reverse cholesterol transport is to transport cholesterol from peripheral tissues to the liver for biliary excretion [11]. Insulin resistance, metabolic overload and the dysregulation of adipokine and cytokine secretion promote nonalcoholic fatty liver disease (NAFLD) [12].

It was shown that mutations in the ATP-binding cassette transporter A1 (ABCA1) cause familial HDL-deficiency syndromes, highlighting ABCA1 as a major regulator of HDL metabolism [13] [14] [15]. Toxic products formed upon fatty acid oxidation and glycoxidation are increased in T2DM and MS and reduce ABCA1 protein stability [11]. Recently, aldehyde oxidase 1 (AOX1) was identified as an ABCA1 interacting protein affecting ABCA1 dependent phospholipid- and cholesterol-efflux (see article on page 781 in this issue). AOX1 expression is most prominent in the liver, as shown for humans [16], rats [17], and cattle [18]. The physiological function of AOX1 just starts to evolve. However, data from Tomita et al. indicate that AOX1 (EC 1.2.3.1) is identical to retinal oxidase [19], suggesting retinal as physiological substrate of AOX1. Both, the oxygen-dependent AOX1 and the cytosolic NAD+-dependent retinaldehyde dehydrogenase (EC 1.2.1.36) are capable of catalyzing the oxidation of retinal to retinoic acid (RA) [20]. The involvement of AOX1 in retinoid metabolism is further supported by chicken AOX1. This also possesses retinaldehyde oxidase activity [21]. The 9-cis RA and all-trans RA are both transcriptional modulators for retinoic acid receptor (RAR)/retinoid X receptor (RXR) target genes and recent data demonstrate the effect of retinoids on lipid efflux in macrophages [22]. A strong RA-dependent upregulation was observed for genes involved in cellular cholesterol homeostasis, including ABCA1 which is under transcriptional control of liver X receptor (LXR)/RXR.

The available data suggest AOX1 to be involved in ethanol-induced liver injury [23] and the generation of reactive oxygen species. AOX1 derived ROS are directly implicated in free radical damage in liver and brain during ethanol metabolism [24] [25] [26] [27] [28]. Alcohol dehydrogenase produces acetaldehyde and NADH from ethanol. Both are substrates for AOX1 and could lead to the formation of ROS in AOX1 expressing tissues [29] [30] [31]. A comparable two-step process is involved in the conversion of both ethanol and retinol into their corresponding acids [32].

Alcohol alters retinoid metabolism (I) by mobilizing vitamin A from the liver and thereby disrupting retinoid homeostasis (II) as competitive inhibitor of retinoic acid generation and (III) enhancer of vitamin A catabolism by inducing CYP2E1 [32]. Chronic and excessive alcohol intake not only leads to a higher risk of various cancers [32] but also alters lipid homeostasis. On one hand, moderate alcohol intake protects from coronary heart disease (CHD), probably because it has an advantage on high density lipoprotein (HDL) levels. On the other hand, heavy drinking was shown to exert adverse effects [33] and chronic alcohol consumption reduces HDL sphingomyelin content, thus impairing cholesterol efflux and uptake [34]. Interestingly alcohol consumption was also described to be associated with elevated triglyceride levels [35]. Alcohol may also affect factors related to the metabolic syndrome. However, no significant differences concerning alcohol consumption were found when comparing subjects with the metabolic syndrome and subjects with no risk factors for this syndrome [35].

In summary, AOX1 may affect plasma HDL levels by altering ABCA1 activity. AOX1 is capable of catalyzing the oxidation of both, retinal to RA and acetaldehyde to acetate and both substrates are supposed to compete for AOX1. This in turn may affect ABCA1 mediated function.

References

  • 1 Lamounier-Zepter V, Ehrhart-Bornstein M, Bornstein SR. Metabolic syndrome and the endocrine stress system.  Horm Metab Res. 2006;  38 437-441
  • 2 Ishikawa K, Takahashi K, Bujo H, Hashimoto N, Yagui K, Saito Y. Subcutaneous fat modulates insulin sensitivity in mice by regulating TNF-alpha expression in visceral fat.  Horm Metab Res. 2006;  38 631-638
  • 3 Sell H, Eckel J. Monocyte chemotactic protein-1 and its role in insulin resistance.  Curr Opin Lipidol. 2007;  18 258-262
  • 4 Shibasaki M, Bujo H, Takahashi K, Murakami K, Unoki H, Saito Y. Catalytically inactive lipoprotein lipase overexpression increases insulin sensitivity in mice.  Horm Metab Res. 2006;  38 491-496
  • 5 Bamba V, Rader DJ. Obesity and atherogenic dyslipidemia.  Gastroenterology. 2007;  132 2181-2190
  • 6 Kraus D, Jager J, Meier B, Fasshauer M, Klein J. Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes.  Horm Metab Res. 2005;  37 455-459
  • 7 Heliovaara MK, Strandberg TE, Karonen SL, Ebeling P. Association of serum adiponectin concentration to lipid and glucose metabolism in healthy humans.  Horm Metab Res. 2006;  38 336-340
  • 8 Schwarz PE, Govindarajalu S, Towers W, Schwanebeck U, Fischer S, Vasseur F, Bornstein SR, Schulze J. Haplotypes in the promoter region of the ADIPOQ gene are associated with increased diabetes risk in a German Caucasian population.  Horm Metab Res. 2006;  38 447-454
  • 9 Goldstein BJ, Scalia R. Adiponectin: A novel adipokine linking adipocytes and vascular function.  J Clin Endocrinol Metab. 2004;  89 2563-2568
  • 10 Ferris WF, Naran NH, Crowther NJ, Rheeder P, Merwe L van der, Chetty N. The relationship between insulin sensitivity and serum adiponectin levels in three population groups.  Horm Metab Res. 2005;  37 695-701
  • 11 Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease.  Physiol Rev. 2005;  85 1343-1372
  • 12 Nugent C, Younossi ZM. Evaluation and management of obesity-related nonalcoholic fatty liver disease.  Nat Clin Pract Gastroenterol Hepatol. 2007;  4 432-441
  • 13 Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M, Kaminski WE, Hahmann HW, Oette K, Rothe G, Aslanidis C, Lackner KJ, Schmitz G. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease.  Nat Genet. 1999;  22 347-351
  • 14 Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, Dam M van, Yu L, Brewer C, Collins JA, Molhuizen HO, Loubser O, Ouelette BF, Fichter K, Ashbourne-Excoffon KJ, Sensen CW, Scherer S, Mott S, Denis M, Martindale D, Frohlich J, Morgan K, Koop B, Pimstone S, Kastelein JJ, Genest Jr J, Hayden MR. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.  Nat Genet. 1999;  22 336-345
  • 15 Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, Deleuze JF, Brewer HB, Duverger N, Denefle P, Assmann G. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.  Nat Genet. 1999;  22 352-355
  • 16 Beedham C, Critchley DJ, Rance DJ. Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon.  Arch Biochem Biophys. 1995;  319 481-490
  • 17 Wright RM, Clayton DA, Riley MG, MacManaman JL, Repine JE. cDNA cloning, sequencing, and characterization of male and female rat liver aldehyde oxidase (rAOX1). Differences in redox status may distinguish male and female forms of hepatic APX.  J Biol Chem. 1999;  274 3878-3886
  • 18 Calzi ML, Raviolo C, Ghibaudi E, Gioia L de, Salmona M, Cazzaniga G, Kurosaki M, Terao M, Garattini E. Purification, cDNA cloning, and tissue distribution of bovine liver aldehyde oxidase.  J Biol Chem. 1995;  270 31037-31045
  • 19 Tomita S, Tsujita M, Ichikawa Y. Retinal oxidase is identical to aldehyde oxidase.  FEBS Lett. 1993;  336 272-274
  • 20 Huang DY, Ichikawa Y. Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol.  Biochem Biophys Res Commun. 1994;  205 1278-1283
  • 21 Terao M, Kurosaki M, Barzago MM, Varasano E, Boldetti A, Bastone A, Fratelli M, Garattini E. Avian and Canine Aldehyde Oxidases: Novel insights into the biology and evolution of molybdo-flavoenzymes.  J Biol Chem. 2006;  281 19748-19761
  • 22 Langmann T, Liebisch G, Moehle C, Schifferer R, Dayoub R, Heiduczek S, Grandl M, Dada A, Schmitz G. Gene expression profiling identifies retinoids as potent inducers of macrophage lipid efflux.  Biochim Biophys Acta. 2005;  1740 155-161
  • 23 Moriwaki Y, Yamamoto T, Higashino K. Distribution and pathophysiologic role of molybdenum-containing enzymes.  Histol Histopathol. 1997;  12 513-524
  • 24 Bondy SC, Orozco J. Effects of ethanol treatment upon sources of reactive oxygen species in brain and liver.  Alcohol Alcohol. 1994;  29 375-383
  • 25 Shaw S, Jayatilleke E. The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat.  Biochem J. 1990;  268 579-583
  • 26 Shaw S, Jayatilleke E. The role of cellular oxidases and catalytic iron in the pathogenesis of ethanol-induced liver injury.  Life Sci. 1992;  50 2045-2052
  • 27 Shaw S, Jayatilleke E. Cimetidine as a scavenger of ethanol-induced free radicals.  Alcohol. 1992;  9 363-367
  • 28 Shaw S, Eng J, Jayatilleke E. Ethanol-induced free radical injury to the hepatocyte glucagon receptor.  Alcohol. 1995;  12 273-277
  • 29 Wright RM, Riley MG, Weigel LK, Ginger LA, Costantino DA, MacManaman JL. Activation of the human aldehyde oxidase (hAOX1) promoter by tandem cooperative Sp1/Sp3 binding sites: identification of complex architecture in the hAOX upstream DNA that includes a proximal promoter, distal activation sites, and a silencer element.  DNA Cell Biol. 2000;  19 459-474
  • 30 Mira L, Maia L, Barreira L, Manso CF. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism.  Arch Biochem Biophys. 1995;  318 53-58
  • 31 Wright RM, Weigel LK, Repine JE. Aldehyde oxidase generates deoxyribonucleic acid single strand nicks in vitro.  Redox Rep. 1995;  1 313-324
  • 32 Wang XD. Alcohol, vitamin A, and cancer.  Alcohol. 2005;  35 251-258
  • 33 Volcik K, Ballantyne CM, Pownall HJ, Sharrett AR, Boerwinkle E. Interaction effects of high-density lipoprotein metabolism gene variation and alcohol consumption on coronary heart disease risk: the atherosclerosis risk in communities study.  J Stud Alcohol Drugs. 2007;  68 485-492
  • 34 Marmillot P, Munoz J, Patel S, Garige M, Rosse RB, Lakshman MR. Long-term ethanol consumption impairs reverse cholesterol transport function of high-density lipoproteins by depleting high-density lipoprotein sphingomyelin both in rats and in humans.  Metabolism. 2007;  56 947-953
  • 35 Goude D, Fagerberg B, Hulthe J. Alcohol consumption, the metabolic syndrome and insulin resistance in 58-year-old clinically healthy men (AIR study).  Clin Sci (Lond). 2002;  102 345-352

Correspondence

Prof. Dr. med. J. Graessler

Department of Internal Medicine III

Division Pathological Biochemistry

Carl Gustav Carus Medical School

Dresden University of Technology

Fetscherstrasse 74

01307 Dresden

Germany

Phone: +49/351/458 32 30

Fax: +49/351/458 53 30

Email: Juergen.Graessler@uniklinikum-dresden.de

    >