Horm Metab Res 2007; 39(10): 717-721
DOI: 10.1055/s-2007-985879
Review

© Georg Thieme Verlag KG Stuttgart · New York

Tissue-specific Alterations of Glucose Transport and Molecular Mechanisms of Intertissue Communication in Obesity and Type 2 Diabetes

T. E. Graham 1 , B. B. Kahn 1
  • 1Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
Further Information

Publication History

received 16.10.2006

accepted 24.07.2007

Publication Date:
22 October 2007 (online)

Abstract

Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.

References

  • 1 Abel ED, Shepherd PR, Kahn BB. Glucose transporters and pathophysiological states. In: LeRoith DR, Olefsky JM, Taylor SI (eds.) Diabetes Mellitus: A Fundamental and Clinical Text. 3rd ed. Philadelphia, PA: JP Lippincott Co. 2004: 917-938
  • 2 Shepherd PR, Kahn BB. Glucose transporters and insulin action - implications for insulin resistance and diabetes mellitus.  N Engl J Med. 1999;  341 248-257
  • 3 Abel ED, Peroni O, Kim JK. et al . Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.  Nature. 2001;  409 ((6821)) 729-733
  • 4 Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue.  J Biol Chem. 1993;  268 22243-22246
  • 5 Gnudi L, Tozzo E, Shepherd PR, Bliss JL, Kahn BB. High level overexpression of glucose transporter-4 driven by an adipose-specific promoter is maintained in transgenic mice on a high fat diet, but does not prevent impaired glucose tolerance.  Endocrinology. 1995;  136 995-1002
  • 6 Tozzo E, Gnudi L, Kahn BB. Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter.  Endocrinology. 1997;  138 1604-1611
  • 7 Zisman A, Peroni OD, Abel ED. et al . Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance.  Nat Med. 2000;  6 924-928
  • 8 Kotani K, Peroni OD, Minokoshi Y, Boss O, Kahn BB. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization.  J Clin Invest. 2004;  114 1666-1675
  • 9 Yang Q, Graham TE, Mody N. et al . Serum retinol binding protein contributes to insulin resistance in obesity and type 2 diabetes.  Nature. 2005;  436 ((7049)) 356-362
  • 10 Blaner WS. Retinol-binding protein: the serum transport protein for vitamin A.  Endocr Rev. 1989;  10 308-316
  • 11 Chambon P. A decade of molecular biology of retinoic acid receptors.  Faseb J. 1996;  10 940-954
  • 12 Monaco HL. The transthyretin-retinol-binding protein complex.  Biochim Biophys Acta. 2000;  1482 65-72
  • 13 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 ((6505)) 425-432
  • 14 Basualdo CG, Wein EE, Basu TK. Vitamin A (retinol) status of first nation adults with non-insulin-dependent diabetes mellitus.  J Am Coll Nutr. 1997;  16 ((1)) 39-45
  • 15 Abahusain MA, Wright J, Dickerson JW, Vol EB de. Retinol, alpha-tocopherol and carotenoids in diabetes.  Eur J Clin Nutr. 1999;  53 630-635
  • 16 Duggirala R, Blangero J, Almasy L. et al . Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans.  Am J Hum Genet. 1999;  64 1127-1140
  • 17 Meigs JB, Panhuysen CI, Myers RH, Wilson PW, Cupples LA. A genome-wide scan for loci linked to plasma levels of glucose and HbA(1c) in a community-based sample of Caucasian pedigrees: The Framingham Offspring Study.  Diabetes. 2002;  51 833-840
  • 18 Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson P-A, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Eng J Med. 2006;  354 2552-2563
  • 19 Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport.  Faseb J. 2001;  15 1101-1103
  • 20 Quadro L, Blaner WS, Hamberger L. et al . Muscle expression of human retinol-binding protein (RBP). Suppression of the visual defect of RBP knockout mice.  J Biol Chem. 2002;  277 30191-30197
  • 21 Quadro L, Blaner WS, Salchow DJ. et al . Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein.  Embo J. 1999;  18 4633-4644
  • 22 Berni R, Formelli F. In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences.  FEBS Lett. 1992;  308 43-45
  • 23 Schaffer EM, Ritter SJ, Smith JE. N-(4-hydroxyphenyl) retinamide (fenretinide) induces retinol-binding protein secretion from liver and accumulation in the kidneys in rats.  J Nutr. 1993;  123 1497-1503
  • 24 Matarese V, Lodish HF. Specific uptake of retinol-binding protein by variant F9 cell lines.  J Biol Chem. 1993;  268 18859-18865
  • 25 Sivaprasadarao A, Findlay JB. Structure-function studies on human retinol-binding protein using site-directed mutagenesis.  Biochem J. 1994;  300 ((Pt 2)) 437-442

Correspondence

B. B. KahnMD 

Division of Endocrinology, Diabetes and Metabolism

Beth Israel Deaconess Medical Center

99 Brookline Avenue - RN 380C

Boston

02215 Massachusetts

USA

Phone: +1/617/667 55 42

Fax: +1/617/667 29 27

Email: bkahn@bidmc.harvard.edu

    >