Subscribe to RSS
DOI: 10.1055/s-2007-984395
© Georg Thieme Verlag KG Stuttgart · New York
The Absence of Transthyretin does not Impair Regulation of Lipid and Glucose Metabolism
Publication History
received 25.9.2006
accepted 15.12.2006
Publication Date:
05 July 2007 (online)
Abstract
Increased levels of neuropeptide Y have been reported in transthyretin-null mice. This effect might be related to transthyretin ligands (retinol and thyroxine) since, through binding to nuclear receptors, they modulate the expression of genes that control cellular metabolism. The retinoic X receptors form obligatory heterodimers with peroxisome proliferator-activated receptors and liver X receptors - potent regulators of fat, glucose and cholesterol homeostasis. We used transthyretin-null mice to investigate whether the absence of transthyretin influences metabolism. Transthyretin-null mice do not differ from controls in body weight and white adipose tissue morphology, nor in basal or fast-induced circulating levels of glucose, lipids, and leptin. Glucose tolerance tests show that transthyretin-null mice have normal capacity to remove and metabolize energy substrates. Expression of genes encoding lipid transporters and nuclear receptors are also similar in transthyretin-null and control mice. Therefore, the absence of transthyretin does not seem to influence the regulation of lipid and glucose metabolism.
Key words
Transthyretin - retinoids - RXR - PPAR - LXR - thyroxine
References
- 1 Palha JA. Transthyretin as a thyroid hormone carrier: function revisited. Clin Chem Lab Med. 2002; 40 1292-1300
- 2 Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001; 81 1097-1142
- 3 Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res. 2002; 43 1773-1808
- 4 Berkenstam A, Farnegardh M, Gustafsson JA. Convergence of lipid homeostasis through liver X and thyroid hormone receptors. Mech Ageing Dev. 2004; 125 707-717
- 5 Chidakel A, Mentuccia D, Celi FS. Peripheral metabolism of thyroid hormone and glucose homeostasis. Thyroid. 2005; 15 899-903
- 6 Lanni A, Moreno M, Lombardi A, Goglia F. Thyroid hormone and uncoupling proteins. FEBS Lett. 2003; 543 5-10
- 7 Pucci E, Chiovato L, Pinchera A. Thyroid and lipid metabolism. Int J Obes Relat Metab Disord. 2000; 24 ((Suppl 2)) S109-S112
- 8 Villarroya F, Iglesias R, Giralt M. Retinoids and retinoid receptors in the control of energy balance: novel pharmacological strategies in obesity and diabetes. Curr Med Chem. 2004; 11 795-805
- 9 Palha JA, Episkopou V, Maeda S, Shimada K, Gottesman ME, Saraiva MJ. Thyroid hormone metabolism in a transthyretin-null mouse strain. J Biol Chem. 1994; 269 33135-33139
- 10 Palha JA, Hays MT, Morreale de Escobar G, Episkopou V, Gottesman ME, Saraiva MJ. Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice. Am J Physiol. 1997; 272 E485-E493
- 11 Wei S, Episkopou V, Piantedosi R, Maeda S, Shimada K, Gottesman ME, Blaner WS. Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem. 1995; 270 866-870
- 12 Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA. 1993; 90 2375-2379
- 13 Vogel S, Piantedosi R, O’Byrne SM, Kako Y, Quadro L, Gottesman ME, Goldberg IJ, Blaner WS. Retinol-binding protein-deficient mice: biochemical basis for impaired vision. Biochemistry. 2002; 41 15360-15368
- 14 Bennekum AM van, Wei S, Gamble MV, Vogel S, Piantedosi R, Gottesman M, Episkopou V, Blaner WS. Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. J Biol Chem. 2001; 276 1107-1113
- 15 Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P. A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. Embo J. 1991; 10 2223-2230
- 16 Nunes AF, Saraiva MJ, Sousa MM. Transthyretin knockouts are a new mouse model for increased neuropeptide Y. Faseb J. 2006; 20 166-168
- 17 Wong H, Anderson WD, Cheng T, Riabowol KT. Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method. Anal Biochem. 1994; 223 251-258
- 18 Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000; 132 365-386
- 19 Tracy RE, Walia P. A method to fix lipids for staining fat embolism in paraffin sections. Histopathology. 2002; 41 75-79
- 20 Moore MC, Connolly CC, Cherrington AD. Autoregulation of hepatic glucose production. Eur J Endocrinol. 1998; 138 240-248
- 21 Wolf G. The mechanism and regulation of fat mobilization from adipose tissue: desnutrin, a newly discovered lipolytic enzyme. Nutr Rev. 2005; 63 166-170
- 22 Francis GA, Fayard E, Picard F, Auwerx J. Nuclear receptors and the control of metabolism. Annu Rev Physiol. 2003; 65 261-311
- 23 Gerber LE, Erdman Jr JW. Hyperlipidemia in rats fed retinoic acid. Lipids. 1981; 16 496-501
- 24 Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000; 275 28240-28245
- 25 Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA. 2000; 97 12097-12102
- 26 Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996; 137 354-366
- 27 Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994; 8 1224-1234
- 28 Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001; 276 37731-37734
- 29 Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology. 2003; 144 2201-2207
- 30 Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000; 404 661-671
- 31 Williams G, Harrold JA, Cutler DJ. The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proc Nutr Soc. 2000; 59 385-396
- 32 Higuchi H, Hasegawa A, Yamaguchi T. Transcriptional regulation of neuronal genes and its effect on neural functions: transcriptional regulation of neuropeptide Y gene by leptin and its effect on feeding. J Pharmacol Sci. 2005; 98 225-231
- 33 Sahu A. Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology. 1998; 139 795-798
- 34 Jequier E. Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci. 2002; 967 379-388
- 35 Sousa JC, Escobar GM de, Oliveira P, Saraiva MJ, Palha JA. Transthyretin is not necessary for thyroid hormone metabolism in conditions of increased hormone demand. J Endocrinol. 2005; 187 257-266
- 36 Argyropoulos G, Harper ME. Uncoupling proteins and thermoregulation. J Appl Physiol. 2002; 92 2187-2198
- 37 Mozo J, Emre Y, Bouillaud F, Ricquier D, Criscuolo F. Thermoregulation: what role for UCPs in mammals and birds?. Biosci Rep. 2005; 25 227-249
- 38 Alvarez R, Andres de J, Yubero P, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F. A novel regulatory pathway of brown fat thermogenesis. Retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J Biol Chem. 1995; 270 5666-5673
- 39 Cassard-Doulcier AM, Larose M, Matamala JC, Champigny O, Bouillaud F, Ricquier D. In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Ets1, retinoid X receptor, thyroid hormone receptor, and a CACCC box-binding protein. J Biol Chem. 1994; 269 24335-24342
- 40 Rabelo R, Reyes C, Schifman A, Silva JE. Interactions among receptors, thyroid hormone response elements, and ligands in the regulation of the rat uncoupling protein gene expression by thyroid hormone. Endocrinology. 1996; 137 3478-3487
- 41 Silva JE, Rabelo R. Regulation of the uncoupling protein gene expression. Eur J Endocrinol. 1997; 136 251-264
- 42 Magni P. Hormonal control of the neuropeptide Y system. Curr Protein Pept Sci. 2003; 4 45-57
- 43 Magni P, Beretta E, Scaccianoce E, Motta M. Retinoic acid negatively regulates neuropeptide Y expression in human neuroblastoma cells. Neuropharmacology. 2000; 39 1628-1636
- 44 Carvajal C, Dumont Y, Herzog H, Quirion R. Emotional behavior in aged neuropeptide Y (NPY) Y2 knockout mice. J Mol Neurosci. 2006; 28 239-245
- 45 Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides. 2004; 38 213-224
- 46 Redrobe JP, Dumont Y, Herzog H, Quirion R. Characterization of neuropeptide Y, Y(2) receptor knockout mice in two animal models of learning and memory processing. J Mol Neurosci. 2004; 22 159-166
- 47 Stogner KA, Holmes PV. Neuropeptide-Y exerts antidepressant-like effects in the forced swim test in rats. Eur J Pharmacol. 2000; 387 R9-R10
Correspondence
J. A. Palha
Life and Health Sciences Research Institute (ICVS)
School of Health Sciences
University of Minho
Campus de Gualtar
4710-057 Braga
Portugal
Phone: +351/253/60 48 17
Fax: +351/253/60 48 09
Email: japalha@ecsaude.uminho.pt