Horm Metab Res 2007; 39(7): 495-500
DOI: 10.1055/s-2007-982502
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Validation of Endogenous Control Genes in Human Adipose Tissue: Relevance to Obesity and Obesity-associated Type 2 Diabetes Mellitus

V. Catalán 1 , J. Gómez-Ambrosi 1 , F. Rotellar 2 , C. Silva 3 , A. Rodríguez 1 , J. Salvador 3 , M. J. Gil 4 , J. A. Cienfuegos 2 , G. Frühbeck 1 , 3
  • 1Metabolic Research Laboratory, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
  • 2Department of Surgery, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
  • 3Department of Endocrinology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
  • 4Department of Biochemistry, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
Weitere Informationen

Publikationsverlauf

received 17. 10. 2006

accepted 29. 1. 2007

Publikationsdatum:
05. Juli 2007 (online)

Abstract

The aim of the present study was to test the influence of obesity and the presence of type 2 diabetes mellitus (T2DM) on the expression of ten housekeeping genes and of the 18S rRNA in a group of human adipose tissue samples from the omental and subcutaneous depot. Adipose tissue biopsies were obtained by laparoscopic surgery from lean and obese patients. After the extraction, mRNA levels in adipose tissue samples were quantified by real-time PCR using the commercial Human Endogenous Control Plates. From the genes analyzed, 18S rRNA exhibited the most stable expression levels in both depots regardless of the pathophysiological conditions of obesity and obesity-associated T2DM. Contrarily, GAPD was the gene with the highest variation in its expression levels, being upregulated (8.0-fold) in the obese group and downregulated (3.5-fold) in obesity-associated T2DM. Our results show that 18S rRNA may be the most suitable gene for normalization in expression studies performed in human adipose tissue samples obtained from patients suffering from obesity and/or obesity-associated T2DM, whereas GAPD is less appropriate for comparison purposes under these circumstances.

References

  • 1 Frühbeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell MA. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation.  Am J Physiol Endocrinol Metab. 2001;  280 E827-E847
  • 2 Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. Distinct transcriptional profiles of adipogenesis in vivo and in vitro.  J Biol Chem. 2001;  276 34167-34174
  • 3 Rajala MW, Scherer PE. Minireview: the adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis.  Endocrinology. 2003;  144 3765-3773
  • 4 Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin-a key adipokine in the metabolic syndrome.  Diabetes Obes Metab. 2006;  8 264-280
  • 5 Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective.  Diabetologia. 2003;  46 143-172
  • 6 Gabrielsson BL, Carlsson B, Carlsson LM. Partial genome scale analysis of gene expression in human adipose tissue using DNA array.  Obes Res. 2000;  8 374-384
  • 7 Gómez-Ambrosi J, Catalán V, Diez-Caballero A. et al . Gene expression profile of omental adipose tissue in human obesity.  FASEB J. 2004;  18 215-217
  • 8 Linder K, Arner P, Flores-Morales A, Tollet-Egnell P, Norstedt G. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women.  J Lipid Res. 2004;  45 148-154
  • 9 Urs S, Smith C, Campbell B, Saxton AM, Taylor J, Zhang B, Snoddy J, Jones Voy B, Moustaid-Moussa N. Gene expression profiling in human preadipocytes and adipocytes by microarray analysis.  J Nutr. 2004;  134 762-770
  • 10 Vandesompele J, Preter K De, Pattyn F, Poppe B, Roy N Von, Paepe A De, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.  Genome Biol. 2002;  3 R34
  • 11 Szabo A, Perou CM, Karaca M, Perreard L, Quackenbush JF, Bernard PS. Statistical modeling for selecting housekeeper genes.  Genome Biol. 2004;  5 R59
  • 12 Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.  J Mol Endocrinol. 2000;  25 169-193
  • 13 Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation.  Biotechniques. 2000;  29 332-337
  • 14 Boucher J, Quilliot D, Praderes JP, Simon MF, Gres S, Guigne C, Prevot D, Ferry G, Boutin JA, Carpene C, Valet P, Saulnier-Blache JS. Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression.  Diabetologia. 2005;  48 569-577
  • 15 Poitou C, Viguerie N, Cancello R, Matteis R De, Cinti S, Stich V, Coussieu C, Gauthier E, Courtine M, Zucker JD, Barsh GS, Saris W, Bruneval P, Basdevant A, Langin D, Clement K. Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition.  Diabetologia. 2005;  48 519-528
  • 16 Viguerie N, Vidal H, Arner P, Viguerie N, Vidal H, Arner P, Holst C, Verdich C, Avizou S, Astrup A, Saris WH, Macdonald IA, Klimcakova E, Clement K, Martinez A, Hoffstedt J, Sorensen TI, Langin D. Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guideline (NUGENOB) project. Adipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets.  Diabetologia. 2005;  48 123-131
  • 17 Plomgaard P, Keller P, Keller C, Pedersen BK. TNF-alpha, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue.  J Appl Physiol. 2005;  98 2019-2023
  • 18 Liu YM, Lacorte JM, Viguerie N, Poitou C, Pelloux V, Guy-Grand B, Coussieu C, Langin D, Basdevant A, Clement K. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding.  J Clin Endocrinol Metab. 2003;  88 5881-5886
  • 19 Schoof E, Stuppy A, Harig F, Carbon R, Horbach T, Stohr W, Rascher W, Dotsch J. Comparison of leptin gene expression in different adipose tissues in children and adults.  Eur J Endocrinol. 2004;  150 579-584
  • 20 Gabrielsson BG, Johansson JM, Lonn M, Jernas M, Olbers T, Peltonen M, Larsson I, Lonn L, Sjostrom L, Carlsson B, Carlsson LM. High expression of complement components in omental adipose tissue in obese men.  Obes Res. 2003;  11 699-708
  • 21 Huan JN, Li J, Han Y, Chen K, Wu N, Zhao AZ. Adipocyte-selective reduction of the leptin receptors induced by antisense RNA leads to increased adiposity, dyslipidemia, and insulin resistance.  J Biol Chem. 2003;  278 45638-45650
  • 22 Engeli S, Bohnke J, Feldpausch M, Gorzelniak K, Heintze U, Janke J, Luft FC, Sharma AM. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss.  Obes Res. 2004;  12 9-17
  • 23 Blouin K, Richard C, Belanger C, Dupont P, Daris M, Laberge P, Luu-The V, Tchernof A. Local androgen inactivation in abdominal visceral adipose tissue.  J Clin Endocrinol Metab. 2003;  88 5944-5950
  • 24 Vohl MC, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D, Hudson TJ, Tchernof A. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men.  Obes Res. 2004;  12 1217-1222
  • 25 Sjoholm K, Palming J, Olofsson LE, Gummesson A, Svensson PA, Lystig TC, Jennische E, Brandberg J, Torgerson JS, Carlsson B, Carlsson LM. A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A.  J Clin Endocrinol Metab. 2005;  90 2233-2239
  • 26 Minehira K, Vega N, Vidal H, Acheson K, Tappy L. Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans.  Int J Obes Relat Metab Disord. 2004;  28 1291-1298
  • 27 Carlsson E, Fredriksson J, Groop L, Ridderstrale M. Variation in the calpain-10 gene is associated with elevated triglyceride levels and reduced adipose tissue messenger ribonucleic acid expression in obese Swedish subjects.  J Clin Endocrinol Metab. 2004;  89 3601-3605
  • 28 Linscheid P, Seboek D, Zulewski H, Keller U, Muller B. Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue.  Endocrinology. 2005;  146 2699-2708
  • 29 Hammarstedt A, Jansson PA, Wesslau C, Yang X, Smith U. Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance.  Biochem Biophys Res Commun. 2003;  301 578-582
  • 30 Gabrielsson BG, Olofsson LE, Sjogren A, Jernas M, Elander A, Lonn M, Rudemo M, Carlsson LM. Evaluation of reference genes for studies of gene expression in human adipose tissue.  Obes Res. 2005;  13 649-652
  • 31 Giusti V, Verdumo C, Suter M, Gaillard RC, Burckhardt P, Pralong F. Expression of peroxisome proliferator-activated receptor-gamma1 and peroxisome proliferator-activated receptor-gamma2 in visceral and subcutaneous adipose tissue of obese women.  Diabetes. 2003;  52 1673-1676
  • 32 Selvey S, Thompson EW, Matthaei K, Lea RA, Irving MG, Griffiths LR. Beta-actin-an unsuitable internal control for RT-PCR.  Mol Cell Probes. 2001;  15 307-311
  • 33 Lupberger J, Kreuzer KA, Baskaynak G, Peters UR, Coutre P, Schmidt CA. Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR.  Mol Cell Probes. 2002;  16 25-30
  • 34 Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes.  Physiol Genomics. 2000;  2 143-147
  • 35 Thellin O, Zorzi W, Lakaye B, Borman B De, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits.  J Biotechnol. 1999;  75 291-295
  • 36 Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems.  J Mol Endocrinol. 2002;  29 23-39
  • 37 Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR - a perspective.  J Mol Endocrinol. 2005;  34 597-601
  • 38 Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.  Anal Biochem. 2002;  309 293-300
  • 39 Einstein FH, Atzmon G, Yang XM, Ma XH, Rincon M, Rudin E, Muzumdar R, Barzilai N. Differential responses of visceral and subcutaneous fat depots to nutrients.  Diabetes. 2005;  54 672-678
  • 40 Giusti V, Suter M, Verdumo C, Gaillard RC, Burckhardt P, Pralong FP. Molecular determinants of human adipose tissue: differences between visceral and subcutaneous compartments in obese women.  J Clin Endocrinol Metab. 2004;  89 1379-1384
  • 41 Lefebvre AM, Laville M, Vega N, Riou JP, Gaal L, Auwerx J, Vidal H. Depot-specific differences in adipose tissue gene expression in lean and obese subjects.  Diabetes. 1998;  47 98-103
  • 42 Wells JC, Fuller NJ. Precision of measurement and body size in whole-body air-displacement plethysmography.  Int J Obes Relat Metab Disord. 2001;  25 1161-1167
  • 43 Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues.  Physiol Genomics. 2005;  21 389-395
  • 44 Harmelen V, Elizalde M, Ariapart P, Bergstedt-Lindqvist S, Reynisdottir S, Hoffstedt J, Lundkvist I, Bringman S, Arner P. The association of human adipose angiotensinogen gene expression with abdominal fat distribution in obesity.  Int J Obes Relat Metab Disord. 2000;  24 673-678
  • 45 Simon MF, Daviaud D, Pradere JP, Gres S, Guigne C, Wabitsch M, Chun J, Valet P, Saulnier-Blache JS. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2.  J Biol Chem. 2005;  280 14656-14662
  • 46 Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR.  Biochem Biophys Res Commun. 2004;  313 856-862
  • 47 Solanas M, Moral R, Escrich E. Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors.  Anal Biochem. 2001;  288 99-102
  • 48 Rolland V, Liepvre X Le, Houbiguian ML, Lavau M, Dugail I. C/EBP alpha expression in adipose tissue of genetically obese Zucker rats.  Biochem Biophys Res Commun. 1995;  207 761-767
  • 49 Rolland V, Dugail I, Liepvre X Le, Lavau M. Evidence of increased glyceraldehyde-3-phosphate dehydrogenase and fatty acid synthetase promoter activities in transiently transfected adipocytes from genetically obese rats.  J Biol Chem. 1995;  270 1102-1106
  • 50 Barroso I, Benito B, Garci-Jimenez C, Hernandez A, Obregon MJ, Santisteban P. Norepinephrine, tri-iodothyronine and insulin upregulate glyceraldehyde-3-phosphate dehydrogenase mRNA during Brown adipocyte differentiation.  Eur J Endocrinol. 1999;  141 169-179
  • 51 Zhu G, Chang Y, Zuo J, Dong X, Zhang M, Hu G, Fang F. Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH.  Biochem Biophys Res Commun. 2001;  281 951-956
  • 52 Zhong H, Simons JW. Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia.  Biochem Biophys Res Commun. 1999;  259 523-526
  • 53 Ke LD, Chen Z, Yung WK. A reliability test of standard-based quantitative PCR: exogenous vs endogenous standards.  Mol Cell Probes. 2000;  14 127-135
  • 54 Roche E, Assimacopoulos-Jeannet F, Witters LA, Perruchoud B, Yaney G, Corkey B, Asfari M, Prentki M. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic beta-cell line (INS-1).  J Biol Chem. 1997;  272 3091-3098
  • 55 Nasrin N, Ercolani L, Denaro M, Kong XF, Kang I, Alexander M. An insulin response element in the glyceraldehyde-3-phosphate dehydrogenase gene binds a nuclear protein induced by insulin in cultured cells and by nutritional manipulations in vivo.  Proc Natl Acad Sci USA. 1990;  87 5273-5277
  • 56 Alexander MC, Lomanto M, Nasrin N, Ramaika C. Insulin stimulates glyceraldehyde-3-phosphate dehydrogenase gene expression through cis-acting DNA sequences.  Proc Natl Acad Sci USA. 1988;  85 5092-5096
  • 57 Dugail I, Quignard-Boulange A, Bazin R, Liepvre X Le, Lavau M. Adipose-tissue-specific increase in glyceraldehyde-3-phosphate dehydrogenase activity and mRNA amounts in suckling pre-obese Zucker rats.  Effect of weaning. Biochem J. 1988;  254 483-487
  • 58 Gorzelniak K, Janke J, Engeli S, Sharma AM. Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes.  Horm Metab Res. 2001;  33 625-627

Correspondence

G. FrühbeckR Nutr, MD, PhD 

Department of Endocrinology

Clínica Universitaria de Navarra

University of Navarra

Avda. Pío XII, 36

31008 Pamplona

Spain

Telefon: +34/948/25 54 00 (ext. 44 84)

Fax: +34/948/29 65 00

eMail: gfruhbeck@unav.es