Rofo 2003; 175(10): 1317-1329
DOI: 10.1055/s-2003-42885
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Normale und pathologische Wasserdiffusion im Gehirn

Normal and Abnormal Water Diffusion in the BrainK.  Sartor1 , M.  Hartmann1 , J.  Fiebach1 , I.  Harting1 , Th.  Wilhelm1 , S.  Heiland1
  • 1Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg
Further Information

Publication History

Publication Date:
13 October 2003 (online)

Zusammenfassung

Die diffusionsgewichtete Magnetresonanztomographie (MRT) hat inzwischen einen festen Platz in der radiologischen Diagnostik bei Erkrankungen des Zentralnervensystems (ZNS). Sie misst die Molekularbewegung von Wasser und erlaubt so die Charakterisierung der Mikrostruktur von Geweben. Ihre wichtigste Anwendung ist derzeit in der Frühdiagnostik der zerebralen Ischämie. Hier markiert sie das geschädigte Gewebe schon kurz nach dem Gefäßverschluss und liefert außerdem für die Therapie entscheidende Informationen über das bedrohte Gewebe. Auch bei vielen anderen ZNS-Erkrankungen ist die diffusionsgewichtete MRT diagnostisch bedeutsam. Sie wird daher zunehmend Bestandteil einschlägiger klinischer Untersuchungsprotokolle, etwa bei Hirntumoren, bei Schädelhirntraumen, bei De- und Dysmyelinisierungskrankheiten sowie bei entzündlichen oder degenerativen Erkrankungen. Obwohl Änderungen der MR-tomographisch gemessenen Diffusion kaum je pathognomonisch sind, erhält man doch pathophysiologisch aufschlussreiche Daten. Außerdem werden Gewebeveränderungen oft früher registriert als mit MR-Standardsequenzen. Ein weiteres wichtiges Anwendungsgebiet sind die Planung und Verfolgung von Biopsien und resektiven Operationen. Vor allem die Diffusionstensor-Bildgebung (Diffusion Tensor Imaging, DTI), die die Orientierung der Faserbündel der weißen Hirnsubstanz wiedergibt, lässt sich gewinnbringend bei der Operationsplanung einsetzen. Mithilfe des DTI kann aber auch eine veränderte Konnektivität zwischen zerebralen Funktionszentren nachgewiesen werden. Daher ist dieses MR-Verfahren hochrelevant für die Diagnostik von Erkrankungen der weißen Hirnsubstanz wie auch für Grundlagenstudien zur Reifung und zur Alterung des Gehirns.

Abstract

Diffusion magnetic resonance imaging (MRI) has become an important tool in the radiologic diagnosis of diseases of the brain as it measures molecular motion of water that characterizes the microstructure of tissues. Its most important clinical use to date is the early detection of cerebral ischemia by revealing the ischemic injury shortly after vessel occlusion and simultaneously providing therapy-relevant information on the tissue at risk. Furthermore, diffusion MRI is diagnostically promising in other diseases of the brain and is thus increasingly becoming part of routine clinical protocols in the diagnosis of tumors, inflammation, trauma, demyelination, dysmyelination and neurodegeneration. Although abnormalities of diffusion are generally not pathognomonic, diffusion MRI affords information about tissue changes for specific disorders that complements information obtained with standard MR techniques and frequently shows pathology earlier. In addition, diffusion MRI can be applied to plan, guide and follow-up biopsies or resective surgery. Particularly diffusion tensor imaging (DTI), which displays the orientation of white matter fibers, holds promise for improved surgical planning. Moreover, DTI can be used to detect changes in connectivity between functional brain areas. Therefore, DTI is highly relevant not only in advancing the knowledge of white matter diseases but also in stimulating research on normal brain development and brain aging.

  • 1 Boltzmann L. Vorlesungen über Gastheorie. 2 vols. Herausgegeben von J. A. Barth Leipzig; 1896, 1898
  • 2 Stejskal E O, Tanner J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient.  J Chem Phys. 1965;  42 288-292
  • 3 LeBihan D, Turner R, Moonen C T, Pekar J. Imaging of diffusion and microcirculation with gradient sensitization: design, strategy, and signif-icance.  J Magn Reson Imaging. 1991;  1 7-28
  • 4 LeBihan D. Molecular diffusion nuclear magnetic resonance imaging.  Magn Reson Q. 1991;  7 1-30
  • 5 Sevick R J, Kanda F, Mintorovitch J, Arieff A I, Kucharczyk J, Tsuruda J S, Norman D, Moseley M E. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging.  Radiology.. 1992;  185 687-690
  • 6 Ordidge R J, Helpern J A, Qing Z X, Knight R A, Nagesh V. Correction of motional artifacts in diffusion-weighted MR images using navigator echoes.  Magn Reson Imaging. 1994;  12 455-460
  • 7 Mori S, Zijl P C van. Diffusion weighting by the trace of the diffusion tensor within a single scan.  Magn Reson. Med.1995;  33 41-52
  • 8 Heiland S, Sartor K. Magnetresonanztomographie beim Schlaganfall - methodische Grundlagen und klinische Anwendung.  Fortschr Röntgenstr. 1999;  171 3-14
  • 9 Verheul H B, Balazs R, Berkelbach van der Sprenkel J W, Tulleken C A, Nicolay K, Tamminga K S, Lookeren Campagne M van. Comparison of diffusion-weighted MRI with changes in cell volume in a rat model of brain injury.  NMR Biomed. 1994;  7 96-100
  • 10 Basser P J, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo.  J Magn Reson B. 1994;  103 247-254
  • 11 LeBihan D, Mangin J F, Poupon C, Clark C A, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. .  J Magn Reson Imaging. 2001;  13 534-546
  • 12 Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain.  Magn Reson Med. 1999;  42 526-540
  • 13 Papadakis N G, Xing D, Houston G C, Smith J M, Smith M I, James M F, Parsons A A, Huang C L, Hall L D, Carpenter T A. A study of rotationally invariant and symmetric indices of diffusion anisotropy.  Magn Reson Imaging. 1999;  17 881-892
  • 14 Filippi M, Cercignani M, Inglese M, Horsfield M A, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis.  Neurology. 2001;  56 304-311
  • 15 Neil J J, Shiran S I, McKinstry R C, Schefft G L, Snyder A Z, Almli C R, Akbudak E, Aronovitz J A, Miller J P, Lee B C, Conturo T E. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging.  Radiology. 1998;  209 57-66
  • 16 Mukherjee P, Miller J H, Shimony J S, Conturo T E, Lee B C, Almli C R, McKinstry R C. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging.  Radiology. 2001;  221 349-358
  • 17 Mukherjee P, Miller J H, Shimony J S, Philip J V, Nehra D, Snyder A Z, Conturo T E, Neil J J, McKinstry R C. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.  Am J Neuroradiol. 2002;  23 1445-1456
  • 18 Engelbrecht V, Scherer A, Rassek M, Witsack H J, Mödder U. Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases.  Radiology. 2002;  222 410-418
  • 19 Flannigan B D, Bradley W G , Mazziotta J C, Rauschning W, Bentson J R, Lufkin R B, Hieshima G B. Magnetic resonance imaging of the brain stem: normal structure and basic functional anatomy.  Radiology. 1985;  154 375-383
  • 20 Fitzek C, Weissmann M, Speckter H, Fitzek S, Hopf H C, Schulte E, Stoeter P. Anatomy of brain-stem white-matter tracts shown by diffusion-weighted imaging.  Neuroradiology. 2001;  43 953-960
  • 21 Chepuri N B, Yen Y F, Burdette J H, Li H, Moody D M, Maldjian J A. Diffusion anisotropy in the corpus callosum.  Am J Neuroradiol. 2002;  23 803-808
  • 22 Helenius J, Soinne L, Perkio J, Salonen O, Kangasmaki A, Kaste M, Carano R A, Aronen H J, Tatlisumak T. Diffusion-weighted MR imaging in normal human brains in various age groups.  Am J Neuroradiol. 2002;  23 194-199
  • 23 Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T. Regional ADC values of the normal brain: differences due to age, gender, and laterality.  Eur Radiol. 2003;  13 6-11
  • 24 Heiland S, Sartor K, Martin E, Bardenheuer H J, Plaschke K. In vivo monitoring of age-related changes in rat brain using quantitative diffusion magnetic resonance imaging and magnetic resonance relaxometry.  Neurosci Lett. 2002;  334 157-160
  • 25 Moseley M E, Kucharczyk J, Mintorivitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D. Diffusion-weighted MR imaging of acute stroke: Correlation with T2-weighted and magnetic susceptibility-enhanced MR-imaging in cats.  Am J Neuroradiol. 1990;  11 423-429
  • 26 Schellinger P D, Fiebach J B, Jansen O, Ringleb P A, Mohr A, Steiner T, Heiland S, Schwab S, Pohlers O, Ryssel H, Orakcioglu B, Sartor K, Hacke W. Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral ischemia.  Ann Neurol. 2001;  49 460-469
  • 27 Jansen O, Schellinger P, Fiebach J, Hacke W, Sartor K. Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI.  Lancet. 1999;  353 2036-2037
  • 28 Röther J, Schellinger P D, Gass A, Siebler M, Villringer A, Fiebach J B, Fiehler J, Jansen O, Kucinski T, Schoder V, Szabo K, Junge-Hülsing G J, Hennerici M, Zeumer H, Sartor K, Weiller C, Hacke W. Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke 6 hours.  Stroke. 2002;  33 2438-2445
  • 29 Fiebach J B, Schellinger P D, Jansen O, Meyer M, Wilde P, Bender J, Schramm P, Jüttler E, Oehler J, Hartmann M, Hähnel S, Knauth M, Hacke W, Sartor K. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke.  Stroke. 2002;  33 2206-2210
  • 30 Fiebach J B, Jansen O, Schellinger P D, Heiland S, Hacke W, Sartor K. Serial analysis of the apparent diffusion coefficient time course in human stroke.  Neuroradiology. 2002;  44 294-298
  • 31 Linfante I, Llinas R H, Caplan L R, Warach S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset.  Stroke. 1999;  30 2263-2267
  • 32 Grant P E, He J, Halpern E F, Wu O, Schaefer P W, Schwamm L H, Budzik R F, Sorensen A G, Koroshetz W J, Gonzalez R G. Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain.  Radiology. 2001;  221 43-50
  • 33 Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study.  Lancet.. 1999;  354 1594-1597
  • 34 Hähnel S, Bender J, Jansen O, Hartmann M, Knauth M, Büsing K, Sartor K. Klinisch stumme Hirnembolien nach zerebraler Katheterangiographie.  Fortschr Röntgenstr. 2001;  173 1-5
  • 35 Rordorf G, Bellon R J, Budzik R E , Farkas J, Reinking G F, Pergolizzi R S, Ezzeddine M, Norbash A M, Gonzalez R G, Putman C M. Silent thromboembolic events associated with the treatment of unruptured cerebral aneurysms by use of Guglielmi detachable coils: prospective study applying diffusion-weighted imaging.  Am J Neuroradiol. 2001;  22 5-10
  • 36 Arbelaez A, Castillo M, Mukherji S K. Diffusion-weighted MR imaging of global cerebral anoxia.  Am J Neuroradiol. 1999;  20 999-1007
  • 37 Yoo S Y, Chang K H, Song I C, Han M H, Kwon B J, Lee S H, Yu I K, Chun C K. Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers.  Am J Neuroradiol. 2002;  23 809-812
  • 38 Lansberg P J, Mitchel Y B, Shapiro D, Kastelein J J, Altman R, Jerums G, Bolzano K, Giannini S, Davignon J, DeWailly P. et al . Long-term efficacy and tolerability of simvastatin in a large cohort of elderly hypercholesterolemic patients.  Atherosclerosis. 1995;  116 153-162
  • 39 Mukherjee P, McKinstry R C. Reversible posterior leukoencephalopathy syndrome: evaluation with diffusion-tensor MR imaging.  Radiology. 2001;  219 756-765
  • 40 Tsuruda J S, Chew W M, Moseley M E, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors.  Am J Neuroradiol. 1990;  11 925-931
  • 41 Brunberg J A, Chenevert T L, McKeever P E, Ross D A, Junck L R, Muraszko K M, Dauser R, Pipe J G, Betley A T. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres.  Am J Neuroradiol. 1995;  16 361-371
  • 42 Stadnik T W, Chaskis C, Michotte A, Shabana W M, Rompaey K van, Luypaert R, Budinsky L, Jellus V, Osteaux M. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings.  Am J Neuroradiol. 2001;  22 969-976
  • 43 Ebisu T, Naruse S, Horikawa Y, Ueda S, Tanaka C, Uto M, Umeda M, Higuchi T. Discrimination between different types of white matter edema with diffusion-weighted MR imaging.  J Magn Reson Imaging. 1993;  3 863-868
  • 44 Okamoto K, Ito J, Ishikawa K, Sakai K, Tokiguchi S. Diffusion-weighted echo-planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions.  Eur Radiol. 2000;  10 1342-1350
  • 45 Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas.  J Magn Reson Imaging. 1999;  9 53-60
  • 46 Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R. The role of diffusion-weighted imaging in patients with brain tumors.  Am J Neuroradiol. 2001;  22 1081-1088
  • 47 Vaupel P W. The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia.  Klin Pädiatr. 1997;  209 243-249
  • 48 Gupta R K, Sinha U, Cloughesy T F, Alger J R. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma.  Magn Reson Med. 1999;  41 2-7
  • 49 Krings T, Coenen V A, Axer H, Reinges M H, Holler M, von Keyserlingk D G, Gilsbach J M, Thron A. In vivo 3D visualization of normal pyramidal tracts in human subjects using diffusion weighted magnetic resonance imaging and a neuronavigation system.  Neurosci Lett. 2001;  307 192-196
  • 50 Desprechins B, Stadnik T, Koerts G, Shabana W, Breucq C, Osteaux M. Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses.  Am J Neuroradiol. 1999;  20 1252-1257
  • 51 Hartmann M, Jansen O, Heiland S, Sommer C, Münkel K, Sartor K. Restricted diffusion within ring enhancement is not pathognomonic for brain abscess.  Am J Neuroradiol. 2001;  22 1738-1742
  • 52 Ebisu T, Tanaka C, Umeda M, Kitamura M, Naruse S, Higuchi T, Ueda S, Sato H. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging.  Magn Reson Imaging. 1996;  14 1113-1116
  • 53 Poon M A, Stuckey S, Storey E. MRI evidence of cerebellar and hippocampal involvement in Creutzfeldt-Jakob disease.  Neuroradiology. 2001;  43 746-749
  • 54 Mittal S, Farmer P, Kalina P, Kingsley P B, Halperin J. Correlation of diffusion-weighted magnetic resonance imaging with neuropathology in Creutzfeldt-Jakob disease.  Arch Neurol. 2002;  59 128-134
  • 55 Werring D J, Clark C A, Barker G J, Thompson A J, Miller D H. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis.  Neurology. 1999;  52 1626-1632
  • 56 Guo A C, Jewells V L, Provenzale J M. Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging.  Am J Neuroradiol. 2001;  22 1893-1900
  • 57 Bozzali M, Cercignani M, Sormani M P, Comi G, Filippi M. Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging.  Am J Neuroradiol. 2002;  23 985-988
  • 58 Filippi M, Grossman R I. MRI techniques to monitor MS evolution: the present and the future.  Neurology.. 2002;  58 1147-1153
  • 59 Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X. Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report.  Am J Neuroradiol. 2002;  23 989-994
  • 60 Yoneda M, Maeda M, Kimura H, Fujii A, Katayama K, Kuriyama M. Vasogenic edema on MELAS: a serial study with diffusion-weighted MR imaging.  Neurology. 1999;  53 2182-2184
  • 61 Phillips M D, McGraw P, Lowe M J, Mathews V P, Hainline B E. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria.  Am J Neuroradiol. 2001;  22 1583-1586
  • 62 Bergui M, Bradac G B, Zhong J J, Barbero P A, Durelli L. Diffusion-weighted MR in reversible wernicke encephalopathy.  Neuroradiology. 2001;  43 969-972
  • 63 Arfanakis K, Haughton V M, Carew J D, Rogers B P, Dempsey R J, Meyerand M E. Diffusion tensor MR imaging in diffuse axonal injury.  Am J Neuroradiol. 2002;  23 794-802
  • 64 Mamata H, Mamata Y, Westin C F, Shenton M E, Kikinis R, Jolesz F A, Maier S E. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy.  Am J Neuroradiol. 2002;  23 67-75

Prof. Dr. Klaus Sartor

Abteilung Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg

Im Neuenheimer Feld 400

69120 Heidelberg

Phone: 06221/567566

Fax: 06221/564673

Email: klaus_sartor@med.uni-heidelberg.de