Semin Liver Dis
DOI: 10.1055/s-0044-1785646
Review Article

Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma

Antonio Saviano
1   Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
2   University of Strasbourg, Strasbourg, France
3   Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
,
Natascha Roehlen
4   Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
5   Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Thomas F. Baumert
1   Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
2   University of Strasbourg, Strasbourg, France
3   Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
6   Institut Universitaire de France, Paris, France
› Institutsangaben
Funding The authors acknowledge the following financial support: European Research Council Grant ERC-AdG-2014 HEPCIR (T.F.B.); European Research Council Grant ERC-AdG-2020 FIBCAN (T.F.B.); European Research Council Grant ERC-PoC-2016 PRELICAN (T.F.B.); European Research Council Grant ERC-PoC-2018 HEPCAN (T.F.B.); ARC Grant TheraHCC2.0 IHUARC IHU201301187 (T.F.B.); ANRS Grant ECTZ103701 (T.F.B.); SATT Conectus, University of Strasbourg (CANCLAU) (T.F.B.); French National Research Agency DELIVER (ANR-21-RHUS-0001) within the France 2030 program and LABEX ANR-10-LABX-0028_HEPSYS (T.F.B.); Berta Ottenstein Program of the University Freiburg (N.R.). This work of the Interdisciplinary Thematic Institute IMCBio, as part of the ITI 2021–2028 program of the University of Strasbourg, CNRS, and Inserm, was further supported by IdEx Unistra (ANR-10-IDEX-0002), and by SFRI-STRAT'US project (ANR 20-SFRI-0012) and EUR IMCBio (ANR-17-EURE-0023) under the framework of the French Investments for the Future Program and the France 2030 program.


Abstract

In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.

Authors' Contribution

A.S. conceptualized, wrote the manuscript, and prepared the figures. N.R. wrote the manuscript. T.F.B. conceptualized, wrote, and edited the manuscript.




Publikationsverlauf

Artikel online veröffentlicht:
22. April 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world–a growing challenge. N Engl J Med 2007; 356 (03) 213-215
  • 2 Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 2023; 77 (04) 1335-1347
  • 3 Sanyal AJ, Harrison SA, Ratziu V. et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: data from the simtuzumab trials. Hepatology 2019; 70 (06) 1913-1927
  • 4 Harrison SA, Taub R, Neff GW. et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2023; 29 (11) 2919-2928
  • 5 Newsome PN, Buchholtz K, Cusi K. et al; NN9931–4296 Investigators. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med 2021; 384 (12) 1113-1124
  • 6 Zhu K, Kakkar R, Chahal D, Yoshida EM, Hussaini T. Efficacy and safety of semaglutide in non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29 (37) 5327-5338
  • 7 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76 (03) 681-693
  • 8 Qi C, Gong J, Li J. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28 (06) 1189-1198
  • 9 Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17 (09) 564-580
  • 10 Severson EA, Parkos CA. Mechanisms of outside-in signaling at the tight junction by junctional adhesion molecule A. Ann N Y Acad Sci 2009; 1165: 10-18
  • 11 Singh AB, Uppada SB, Dhawan P. Claudin proteins, outside-in signaling, and carcinogenesis. Pflugers Arch 2017; 469 (01) 69-75
  • 12 Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction proteins. Ann N Y Acad Sci 2012; 1258: 115-124
  • 13 Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68 (03) 547-561
  • 14 González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 2008; 1778 (03) 729-756
  • 15 Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 2008; 181 (04) 683-695
  • 16 Oka T, Remue E, Meerschaert K. et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J 2010; 432 (03) 461-472
  • 17 Lv XB, Liu CY, Wang Z. et al. PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep 2015; 16 (08) 975-985
  • 18 Cravo AS, Carter E, Erkan M, Harvey E, Furutani-Seiki M, Mrsny R. Hippo pathway elements co-localize with occludin: a possible sensor system in pancreatic epithelial cells. Tissue Barriers 2015; 3 (03) e1037948
  • 19 Domínguez-Calderón A, Ávila-Flores A, Ponce A. et al. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Mol Biol Cell 2016; 27 (10) 1581-1595
  • 20 Li D, Mrsny RJ. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 2000; 148 (04) 791-800
  • 21 Barrios-Rodiles M, Brown KR, Ozdamar B. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005; 307 (5715) 1621-1625
  • 22 Steed E, Elbediwy A, Vacca B. et al. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. J Cell Biol 2014; 204 (05) 821-838
  • 23 Lu Z, Kim DH, Fan J. et al. A non-tight junction function of claudin-7-interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment. Mol Cancer 2015; 14: 120
  • 24 Dhawan P, Singh AB, Deane NG. et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 2005; 115 (07) 1765-1776
  • 25 Tiwari-Woodruff SK, Buznikov AG, Vu TQ. et al. OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 2001; 153 (02) 295-305
  • 26 Peddibhotla SS, Brinkmann BF, Kummer D. et al. Tetraspanin CD9 links junctional adhesion molecule-A to αvβ3 integrin to mediate basic fibroblast growth factor-specific angiogenic signaling. Mol Biol Cell 2013; 24 (07) 933-944
  • 27 Rao RK, Samak G. Bile duct epithelial tight junctions and barrier function. Tissue Barriers 2013; 1 (04) e25718
  • 28 Roehlen N, Saviano A, El Saghire H. et al. A monoclonal antibody targeting nonjunctional claudin-1 inhibits fibrosis in patient-derived models by modulating cell plasticity. Sci Transl Med 2022; 14 (676) eabj4221
  • 29 Aoudjehane L, Bisch G, Scatton O. et al. Infection of human liver myofibroblasts by hepatitis C virus: a direct mechanism of liver fibrosis in hepatitis C. PLoS One 2015; 10 (07) e0134141
  • 30 Mailly L, Baumert TF. Hepatitis C virus infection and tight junction proteins: the ties that bind. Biochim Biophys Acta Biomembr 2020; 1862 (07) 183296
  • 31 Scarselli E, Ansuini H, Cerino R. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 2002; 21 (19) 5017-5025
  • 32 Mee CJ, Harris HJ, Farquhar MJ. et al. Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J Virol 2009; 83 (12) 6211-6221
  • 33 Cukierman L, Meertens L, Bertaux C, Kajumo F, Dragic T. Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts. J Virol 2009; 83 (11) 5477-5484
  • 34 Reynolds GM, Harris HJ, Jennings A. et al. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 2008; 47 (02) 418-427
  • 35 Mailly L, Xiao F, Lupberger J. et al. Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nat Biotechnol 2015; 33 (05) 549-554
  • 36 Deffieu MS, Clément CMH, Dorobantu CM. et al. Occludin stalls HCV particle dynamics apart from hepatocyte tight junctions, promoting virion internalization. Hepatology 2022; 76 (04) 1164-1179
  • 37 Evans MJ, von Hahn T, Tscherne DM. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007; 446 (7137) 801-805
  • 38 Harris HJ, Farquhar MJ, Mee CJ. et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol 2008; 82 (10) 5007-5020
  • 39 Harris HJ, Davis C, Mullins JG. et al. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 2010; 285 (27) 21092-21102
  • 40 Benedicto I, Molina-Jiménez F, Bartosch B. et al. The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol 2009; 83 (16) 8012-8020
  • 41 Liu S, Kuo W, Yang W. et al. The second extracellular loop dictates occludin-mediated HCV entry. Virology 2010; 407 (01) 160-170
  • 42 Sourisseau M, Michta ML, Zony C. et al. Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS Pathog 2013; 9 (03) e1003244
  • 43 Timpe JM, Stamataki Z, Jennings A. et al. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 2008; 47 (01) 17-24
  • 44 Xiao F, Fofana I, Heydmann L. et al. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents. PLoS Pathog 2014; 10 (05) e1004128
  • 45 Krieger SE, Zeisel MB, Davis C. et al. Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2–CD81-claudin-1 associations. Hepatology 2010; 51 (04) 1144-1157
  • 46 Fofana I, Krieger SE, Grunert F. et al. Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 2010; 139 (03) 953-964 , 964.e1–964.e4
  • 47 Shimizu Y, Shirasago Y, Kondoh M. et al. Monoclonal antibodies against occludin completely prevented hepatitis C virus infection in a mouse model. J Virol 2018; 92 (08) e02258–17
  • 48 Okai K, Ichikawa-Tomikawa N, Saito AC. et al. A novel occludin-targeting monoclonal antibody prevents hepatitis C virus infection in vitro. . Oncotarget 2018; 9 (24) 16588-16598
  • 49 Kong FE, Li GM, Tang YQ. et al. Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody-drug conjugate. Sci Transl Med 2021; 13 (579) eabb6282
  • 50 Everhart JE, Wright EC, Goodman ZD. et al; HALT-C Trial Group. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology 2010; 51 (02) 585-594
  • 51 Zadori G, Gelley F, Torzsok P. et al. Examination of claudin-1 expression in patients undergoing liver transplantation owing to hepatitis C virus cirrhosis. Transplant Proc 2011; 43 (04) 1267-1271
  • 52 Holczbauer Á, Gyöngyösi B, Lotz G. et al. Increased expression of claudin-1 and claudin-7 in liver cirrhosis and hepatocellular carcinoma. Pathol Oncol Res 2014; 20 (03) 493-502
  • 53 Jang I, Beningo KA. Integrins, CAFs and mechanical forces in the progression of cancer. Cancers (Basel) 2019; 11 (05) 721
  • 54 Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 2019; 69 (01) 420-430
  • 55 Creeden JF, Kipp ZA, Xu M. et al. Hepatic kinome atlas: an in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology 2022; 76 (05) 1376-1388
  • 56 Ramachandran P, Iredale JP, Fallowfield JA. Resolution of liver fibrosis: basic mechanisms and clinical relevance. Semin Liver Dis 2015; 35 (02) 119-131
  • 57 Pardo A, Gibson K, Cisneros J. et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med 2005; 2 (09) e251
  • 58 Hasegawa K, Wakino S, Simic P. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 2013; 19 (11) 1496-1504
  • 59 Lovisa S, LeBleu VS, Tampe B. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 2015; 21 (09) 998-1009
  • 60 Habermann AC, Gutierrez AJ, Bui LT. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1972
  • 61 Brozat JF, Brandt EF, Stark M. et al. JAM-A is a multifaceted regulator in hepatic fibrogenesis, supporting LSEC integrity and stellate cell quiescence. Liver Int 2022; 42 (05) 1185-1203
  • 62 Hintermann E, Bayer M, Ehser J. et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adhes Migr 2016; 10 (04) 419-433
  • 63 Xu J, Kausalya PJ, Van Hul N. et al. Protective functions of ZO-2/Tjp2 expressed in hepatocytes and cholangiocytes against liver injury and cholestasis. Gastroenterology 2021; 160 (06) 2103-2118
  • 64 Pradhan-Sundd T, Vats R, Russell JO. et al. Dysregulated bile transporters and impaired tight junctions during chronic liver injury in mice. Gastroenterology 2018; 155 (04) 1218-1232.e24
  • 65 Tsujiwaki M, Murata M, Takasawa A. et al. Aberrant expression of claudin-4 and -7 in hepatocytes in the cirrhotic human liver. Med Mol Morphol 2015; 48 (01) 33-43
  • 66 Seth D, Gorrell MD, Cordoba S, McCaughan GW, Haber PS. Intrahepatic gene expression in human alcoholic hepatitis. J Hepatol 2006; 45 (02) 306-320
  • 67 Mohandas S, Vairappan B. Pregnane X receptor activation by its natural ligand ginkgolide-A improves tight junction proteins expression and attenuates bacterial translocation in cirrhosis. Chem Biol Interact 2020; 315: 108891
  • 68 Yamamoto T, Kojima T, Murata M. et al. IL-1beta regulates expression of Cx32, occludin, and claudin-2 of rat hepatocytes via distinct signal transduction pathways. Exp Cell Res 2004; 299 (02) 427-441
  • 69 Yamamoto T, Kojima T, Murata M. et al. p38 MAP-kinase regulates function of gap and tight junctions during regeneration of rat hepatocytes. J Hepatol 2005; 42 (05) 707-718
  • 70 Kojima T, Yamamoto T, Murata M. et al. Role of the p38 MAP-kinase signaling pathway for Cx32 and claudin-1 in the rat liver. Cell Commun Adhes 2003; 10 (4–6): 437-443
  • 71 Rumgay H, Arnold M, Ferlay J. et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol 2022; 77 (06) 1598-1606
  • 72 Sung H, Ferlay J, Siegel RL. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (03) 209-249
  • 73 Llovet JM, Zucman-Rossi J, Pikarsky E. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2016; 2: 16018
  • 74 Li CP, Cai MY, Jiang LJ. et al. CLDN14 is epigenetically silenced by EZH2-mediated H3K27ME3 and is a novel prognostic biomarker in hepatocellular carcinoma. Carcinogenesis 2016; 37 (06) 557-566
  • 75 Jiang L, Yang YD, Fu L. et al. CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget 2014; 5 (17) 7663-7676
  • 76 Bouchagier KA, Assimakopoulos SF, Karavias DD. et al. Expression of claudins-1, -4, -5, -7 and occludin in hepatocellular carcinoma and their relation with classic clinicopathological features and patients' survival. In Vivo 2014; 28 (03) 315-326
  • 77 Huang GW, Ding X, Chen SL, Zeng L. Expression of claudin 10 protein in hepatocellular carcinoma: impact on survival. J Cancer Res Clin Oncol 2011; 137 (08) 1213-1218
  • 78 Cheung ST, Leung KL, Ip YC. et al. Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clin Cancer Res 2005; 11 (2 Pt 1): 551-556
  • 79 Higashi Y, Suzuki S, Sakaguchi T. et al. Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res 2007; 139 (01) 68-76
  • 80 Ram AK, Pottakat B, Vairappan B. Increased systemic zonula occludens 1 associated with inflammation and independent biomarker in patients with hepatocellular carcinoma. BMC Cancer 2018; 18 (01) 572
  • 81 Nagai T, Arao T, Nishio K. et al. Impact of Tight Junction Protein ZO-1 and TWIST Expression on Postoperative Survival of Patients with Hepatocellular Carcinoma. Dig Dis 2016; 34 (06) 702-707
  • 82 Orbán E, Szabó E, Lotz G. et al. Different expression of occludin and ZO-1 in primary and metastatic liver tumors. Pathol Oncol Res 2008; 14 (03) 299-306
  • 83 Roehlen N, Roca Suarez AA, El Saghire H. et al. Tight junction proteins and the biology of hepatobiliary disease. Int J Mol Sci 2020; 21 (03) 825
  • 84 Roehlen N, Muller M, Nehme Z. et al. Treatment of HCC with claudin-1-specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment. J Hepatol 2023; 78 (02) 343-355
  • 85 Ono Y, Hiratsuka Y, Murata M. et al. Claudins-4 and -7 might be valuable markers to distinguish hepatocellular carcinoma from cholangiocarcinoma. Virchows Arch 2016; 469 (04) 417-426
  • 86 Luczka E, Syne L, Nawrocki-Raby B. et al. Regulation of membrane-type 1 matrix metalloproteinase expression by zonula occludens-2 in human lung cancer cells. Clin Exp Metastasis 2013; 30 (07) 833-843
  • 87 Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998; 153 (06) 1767-1773
  • 88 Martin TA, Jiang WG. Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 2009; 1788 (04) 872-891
  • 89 Paschoud S, Bongiovanni M, Pache JC, Citi S. Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol 2007; 20 (09) 947-954
  • 90 Mattern J, Roghi CS, Hurtz M, Knäuper V, Edwards DR, Poghosyan Z. ADAM15 mediates upregulation of Claudin-1 expression in breast cancer cells. Sci Rep 2019; 9 (01) 12540
  • 91 Kyuno D, Kojima T, Yamaguchi H. et al. Protein kinase Cα inhibitor protects against downregulation of claudin-1 during epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis 2013; 34 (06) 1232-1243
  • 92 Nübel T, Preobraschenski J, Tuncay H. et al. Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 2009; 7 (03) 285-299
  • 93 Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight junction protein signaling and cancer biology. Cells 2023; 12 (02) 243
  • 94 Bhat AA, Uppada S, Achkar IW. et al. Tight junction proteins and signaling pathways in cancer and inflammation: a functional crosstalk. Front Physiol 2019; 9: 1942
  • 95 Suh Y, Yoon CH, Kim RK. et al. Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 2013; 32 (41) 4873-4882
  • 96 Yoon CH, Kim MJ, Park MJ. et al Claudin-1 acts through c-Abl-protein kinase Cdelta (PKCdelta) signaling and has a causal role in the acquisition of invasive capacity in human liver cells. J Biol Chem 2010; 285 (01) 226-233
  • 97 Zhang X, Wang L, Zhang H, Tu F, Qiang Y, Nie C. Decreased expression of ZO-1 is associated with tumor metastases in liver cancer. Oncol Lett 2019; 17 (02) 1859-1864
  • 98 Finn RS, Qin S, Ikeda M. et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
  • 99 Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology 2023; 79 (04) 926-940
  • 100 Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol 2023; 79 (02) 506-515
  • 101 Chang JW, Seo ST, Im MA. et al. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl Res 2022; 247: 58-78
  • 102 He Z, Fan F, Xu Z. et al. Downregulation of CLDN6 inhibits cell migration and invasion and promotes apoptosis by regulation of the JAK2/STAT3 signaling pathway in hepatocellular carcinoma. Transl Cancer Res 2023; 12 (07) 1753-1764
  • 103 Lu Y, Dang Q, Bo Y. et al. The expression of CLDN6 in hepatocellular carcinoma tissue and the effects of CLDN6 on biological phenotypes of hepatocellular carcinoma cells. J Cancer 2021; 12 (18) 5454-5463
  • 104 Mackensen A, Haanen JBAG, Koenecke C. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211–01 trial. Nat Med 2023; 29 (11) 2844-2853
  • 105 Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10 (12) 3647-3661