Semin Respir Crit Care Med 2023; 44(01): 008-020
DOI: 10.1055/s-0042-1759889
Review Article

Clinical Features of COVID-19 and Differentiation from Other Causes of CAP

Catherine A. Gao
1   Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Chiagozie I. Pickens
1   Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Luisa Morales-Nebreda
1   Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Richard G. Wunderink
1   Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
› Author Affiliations

Abstract

Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality, one of the most common reasons for infection-related death worldwide. Causes of CAP include numerous viral, bacterial, and fungal pathogens, though frequently no specific organism is found. Beginning in 2019, the COVID-19 pandemic has caused incredible morbidity and mortality. COVID-19 has many features typical of CAP such as fever, respiratory distress, and cough, and can be difficult to distinguish from other types of CAP. Here, we highlight unique clinical features of COVID-19 pneumonia such as olfactory and gustatory dysfunction, lymphopenia, and distinct imaging appearance.



Publication History

Article published online:
16 January 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Torres A, Cilloniz C, Niederman MS. et al. Pneumonia. Nat Rev Dis Primers 2021; 7 (01) 25
  • 2 Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). In: StatPearls. StatPearls Publishing; 2022
  • 3 WHO Coronavirus (COVID-19) Dashboard. Accessed May 23, 2022 at: https://covid19.who.int/
  • 4 Jain S, Self WH, Wunderink RG. et al; CDC EPIC Study Team. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med 2015; 373 (05) 415-427
  • 5 Leber AL, Everhart K, Daly JA. et al. Multicenter Evaluation of BioFire FilmArray Respiratory Panel 2 for detection of viruses and bacteria in nasopharyngeal swab samples. J Clin Microbiol 2018; 56 (06) e01945-17
  • 6 Lim WS, Macfarlane JT, Boswell TC. et al. Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 2001; 56 (04) 296-301
  • 7 Aleem A, Akbar Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022
  • 8 Ahmad FB, Anderson RN. The leading causes of death in the US for 2020. JAMA 2021; 325 (18) 1829-1830
  • 9 Vila-Corcoles A, Ochoa-Gondar O, Rodriguez-Blanco T, Raga-Luria X, Gomez-Bertomeu F. EPIVAC Study Group. Epidemiology of community-acquired pneumonia in older adults: a population-based study. Respir Med 2009; 103 (02) 309-316
  • 10 Achaiah NC, Subbarajasetty SB, Shetty RM. R0 and Re of COVID-19: Can we predict when the pandemic outbreak will be contained?. Indian J Crit Care Med 2020; 24 (11) 1125-1127
  • 11 Lee Y, Lee DH, Kwon HD, Kim C, Lee J. Estimation of the reproduction number of influenza A(H1N1)pdm09 in South Korea using heterogeneous models. BMC Infect Dis 2021; 21 (01) 658
  • 12 He X, Lau EHY, Wu P. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020; 26 (05) 672-675
  • 13 Stout AE, Guo Q, Millet JK, Whittaker GR. Viral and host attributes underlying the origins of zoonotic coronaviruses in bats. Comp Med 2021; 71 (05) 442-450
  • 14 Lau SKP, Luk HKH, Wong ACP. et al. Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 2020; 26 (07) 1542-1547
  • 15 Murakami S, Kitamura T, Suzuki J. et al. Detection and characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg Infect Dis 2020; 26 (12) 3025-3029
  • 16 Zhou H, Ji J, Chen X. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 2021; 184 (17) 4380-4391.e14
  • 17 El-Sayed A, Kamel M. Coronaviruses in humans and animals: the role of bats in viral evolution. Environ Sci Pollut Res Int 2021; 28 (16) 19589-19600
  • 18 Wang Q, Chen H, Shi Y. et al. Tracing the origins of SARS-CoV-2: lessons learned from the past. Cell Res 2021; 31 (11) 1139-1141
  • 19 Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 2019; 17 (02) 67-81
  • 20 Klompas M, Milton DK, Rhee C, Baker MA, Leekha S. Current insights into respiratory virus transmission and potential implications for infection control programs: a narrative review. Ann Intern Med 2021; 174 (12) 1710-1718
  • 21 World Health Organization. COVID-19 disease in children and adolescents: scientific brief, 29 September 2021. Published September 29, 2021. Accessed June 29, 2022 at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Children_and_adolescents-2021.1
  • 22 Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23 (01) 74-98
  • 23 Koch CM, Prigge AD, Anekalla KR. et al. Age-related differences in the nasal mucosal immune response to SARS-CoV-2. Am J Respir Cell Mol Biol 2022; 66 (02) 206-222
  • 24 Cohen CA, Li APY, Hachim A. et al. SARS-CoV-2 specific T cell responses are lower in children and increase with age and time after infection. Nat Commun 2021; 12 (01) 4678
  • 25 Pierce CA, Preston-Hurlburt P, Dai Y. et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med 2020; 12 (564) eabd5487
  • 26 Rowntree LC, Nguyen THO, Kedzierski L. et al. SARS-CoV-2-specific T cell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity 2022; 55 (07) 1299-1315.e4
  • 27 Grifoni A, Weiskopf D, Ramirez SI. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181 (07) 1489-1501.e15
  • 28 Mateus J, Grifoni A, Tarke A. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020; 370 (6512): 89-94
  • 29 Selva KJ, van de Sandt CE, Lemke MM. et al. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat Commun 2021; 12 (01) 2037
  • 30 Sagar M, Reifler K, Rossi M. et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J Clin Invest 2021; 131 (01) 143380
  • 31 Bacher P, Rosati E, Esser D. et al. Low-avidity CD4+ T cell responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19. Immunity 2020; 53 (06) 1258-1271.e5
  • 32 Brodin P. SARS-CoV-2 infections in children: understanding diverse outcomes. Immunity 2022; 55 (02) 201-209
  • 33 Zhang Q, Bastard P, Liu Z. et al; COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC COVID-19 Biobank, COVID Human Genetic Effort, NIAID-USUHS/TAGC COVID Immunity Group. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370 (6515): eabd4570
  • 34 Bastard P, Orlova E, Sozaeva L. et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med 2021; 218 (07) e20210554
  • 35 Mehta HB, Li S, Goodwin JS. Risk factors associated with SARS-CoV-2 infections, hospitalization, and mortality among US nursing home residents. JAMA Netw Open 2021; 4 (03) e216315
  • 36 Torres A, Peetermans WE, Viegi G, Blasi F. Risk factors for community-acquired pneumonia in adults in Europe: a literature review. Thorax 2013; 68 (11) 1057-1065
  • 37 Fine MJ, Auble TE, Yealy DM. et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 1997; 336 (04) 243-250
  • 38 Lim WS, Lewis S, Macfarlane JT. Severity prediction rules in community acquired pneumonia: a validation study. Thorax 2000; 55 (03) 219-223
  • 39 Cillóniz C, Dominedò C, Pericàs JM, Rodriguez-Hurtado D, Torres A. Community-acquired pneumonia in critically ill very old patients: a growing problem. Eur Respir Rev 2020; 29 (155) 190126
  • 40 de Miguel-Yanes JM, Lopez-de-Andres A, Jiménez-Garcia R. et al. Incidence, outcomes and sex-related disparities in pneumonia: a matched-pair analysis with data from Spanish Hospitals (2016-2019). J Clin Med 2021; 10 (19) 4339
  • 41 López-de-Andrés A, Albaladejo-Vicente R, de Miguel-Diez J. et al. Gender differences in incidence and in-hospital outcomes of community-acquired, ventilator-associated and nonventilator hospital-acquired pneumonia in Spain. Int J Clin Pract 2021; 75 (03) e13762
  • 42 Quero BG, Fernandez LS, Moyano MG. et al. Differences in community acquired pneumonia according to gender. Eur Respir J 2017; 50 DOI: 10.1183/1393003.congress-2017.PA4101.
  • 43 Jin JM, Bai P, He W. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 2020; 8: 152
  • 44 Lakbar I, Luque-Paz D, Mege JL, Einav S, Leone M. COVID-19 gender susceptibility and outcomes: a systematic review. PLoS One 2020; 15 (11) e0241827
  • 45 Nguyen NT, Chinn J, De Ferrante M, Kirby KA, Hohmann SF, Amin A. Male gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS One 2021; 16 (07) e0254066
  • 46 Danielsen AC, Lee KM, Boulicault M. et al. Sex disparities in COVID-19 outcomes in the United States: quantifying and contextualizing variation. Soc Sci Med 2022; 294: 114716
  • 47 Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol 2020; 20 (07) 442-447
  • 48 Galasso V, Pons V, Profeta P, Becher M, Brouard S, Foucault M. Gender differences in COVID-19 attitudes and behavior: panel evidence from eight countries. Proc Natl Acad Sci U S A 2020; 117 (44) 27285-27291
  • 49 Hawkins D, Davis L, Kriebel D. COVID-19 deaths by occupation, Massachusetts, March 1-July 31, 2020. Am J Ind Med 2021; 64 (04) 238-244
  • 50 Webb Hooper M, Nápoles AM, Pérez-Stable EJ. COVID-19 and racial/ethnic disparities. JAMA 2020; 323 (24) 2466-2467
  • 51 Romano SD, Blackstock AJ, Taylor EV. et al. Trends in racial and ethnic disparities in COVID-19 hospitalizations, by region - United States, March-December 2020. MMWR Morb Mortal Wkly Rep 2021; 70 (15) 560-565
  • 52 Sze S, Pan D, Nevill CR. et al. Ethnicity and clinical outcomes in COVID-19: a systematic review and meta-analysis. EClinicalMedicine 2020; 29: 100630
  • 53 Hausmann LRM, Ibrahim SA, Mehrotra A. et al. Racial and ethnic disparities in pneumonia treatment and mortality. Med Care 2009; 47 (09) 1009-1017
  • 54 Frei CR, Mortensen EM, Copeland LA. et al. Disparities of care for African-Americans and Caucasians with community-acquired pneumonia: a retrospective cohort study. BMC Health Serv Res 2010; 10: 143
  • 55 Haas JS, Dean ML, Hung Y, Rennie DJ. Differences in mortality among patients with community-acquired pneumonia in California by ethnicity and hospital characteristics. Am J Med 2003; 114 (08) 660-664
  • 56 King P, Mortensen EM, Bollinger M. et al. Impact of obesity on outcomes for patients hospitalised with pneumonia. Eur Respir J 2013; 41 (04) 929-934
  • 57 Nie W, Zhang Y, Jee SH, Jung KJ, Li B, Xiu Q. Obesity survival paradox in pneumonia: a meta-analysis. BMC Med 2014; 12: 61
  • 58 Simonnet A, Chetboun M, Poissy J. et al; LICORN and the Lille COVID-19 and Obesity study group. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020; 28 (07) 1195-1199
  • 59 Cai Q, Chen F, Wang T. et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 2020; 43 (07) 1392-1398
  • 60 Popkin BM, Du S, Green WD. et al. Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships. Obes Rev 2020; 21 (11) e13128
  • 61 Mohammad S, Aziz R, Al Mahri S. et al. Obesity and COVID-19: what makes obese host so vulnerable?. Immun Ageing 2021; 18 (01) 1
  • 62 Alves VP, Casemiro FG, Araujo BG. et al. Factors associated with mortality among elderly people in the COVID-19 pandemic (SARS-CoV-2): a systematic review and meta-analysis. Int J Environ Res Public Health 2021; 18 (15) 8008
  • 63 Péterfi A, Mészáros Á, Szarvas Z. et al. Comorbidities and increased mortality of COVID-19 among the elderly: a systematic review. Physiol Int 2022; DOI: 10.1556/2060.2022.00206.
  • 64 Tian J, Xu Q, Liu S, Mao L, Wang M, Hou X. Comparison of clinical characteristics between coronavirus disease 2019 pneumonia and community-acquired pneumonia. Curr Med Res Opin 2020; 36 (11) 1747-1752
  • 65 Lin YH, Luo W, Wu DH. et al. Comparison of clinical, laboratory, and radiological characteristics between SARS-CoV-2 infection and community-acquired pneumonia caused by influenza virus: a cross-sectional retrospective study. Medicine (Baltimore) 2020; 99 (44) e23064
  • 66 Butowt R, von Bartheld CS. Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist 2021; 27 (06) 582-603
  • 67 Aziz M, Goyal H, Haghbin H, Lee-Smith WM, Gajendran M, Perisetti A. The association of “loss of smell” to COVID-19: a systematic review and meta-analysis. Am J Med Sci 2021; 361 (02) 216-225
  • 68 Rebholz H, Braun RJ, Ladage D, Knoll W, Kleber C, Hassel AW. Loss of olfactory function-early indicator for COVID-19, other viral infections and neurodegenerative disorders. Front Neurol 2020; 11: 569333
  • 69 Welge-Lüssen A, Wolfensberger M. Olfactory disorders following upper respiratory tract infections. Adv Otorhinolaryngol 2006; 63: 125-132
  • 70 Desiato VM, Levy DA, Byun YJ, Nguyen SA, Soler ZM, Schlosser RJ. The prevalence of olfactory dysfunction in the general population: a systematic review and meta-analysis. Am J Rhinol Allergy 2021; 35 (02) 195-205
  • 71 Hannum ME, Koch RJ, Ramirez VA. et al. Taste loss as a distinct symptom of COVID-19: a systematic review and meta-analysis. Chem Senses 2022; 47: bjac001
  • 72 Agyeman AA, Chin KL, Landersdorfer CB, Liew D, Ofori-Asenso R. Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis. Mayo Clin Proc 2020; 95 (08) 1621-1631
  • 73 Renaud M, Leon A, Trau G. et al. Acute smell and taste loss in outpatients: all infected with SARS-CoV-2?. Rhinology 2020; 58 (04) 406-409
  • 74 Alharbi H, You S, Katz J. Should anosmia and dysgeusia be a concern for oral and maxillofacial surgeons during the COVID-19 pandemic?. Oral Maxillofac Surg 2022; 26 (01) 105-111
  • 75 Thomas DC, Chablani D, Parekh S, Pichammal RC, Shanmugasundaram K, Pitchumani PK. Dysgeusia: a review in the context of COVID-19. J Am Dent Assoc 2022; 153 (03) 251-264
  • 76 Neta FI, Fernandes ACL, Vale AJM. et al. Pathophysiology and possible treatments for olfactory-gustatory disorders in patients affected by COVID-19. Curr Res Pharmacol Drug Discov 2021; 2: 100035
  • 77 Menni C, Valdes AM, Polidori L. et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet 2022; 399 (10335): 1618-1624
  • 78 Henkin RI, Larson AL, Powell RD. Hypogeusia, dysgeusia, hyposmia, and dysosmia following influenza-like infection. Ann Otol Rhinol Laryngol 1975; 84 (5, Pt 1): 672-682
  • 79 Trachootham D, Thongyen S, Lam-Ubol A, Chotechuang N, Pongpirul W, Prasithsirikul W. Simultaneously complete but not partial taste and smell losses were associated with SARS-CoV-2 infection. Int J Infect Dis 2021; 106: 329-337
  • 80 Docherty AB, Harrison EM, Green CA. et al; ISARIC4C Investigators. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ 2020; 369: m1985
  • 81 Guan WJ, Ni ZY, Hu Y. et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382 (18) 1708-1720
  • 82 Kaysin A, Viera AJ. Community-acquired pneumonia in adults: diagnosis and management. Am Fam Physician 2016; 94 (09) 698-706
  • 83 Community-acquired pneumonia (non COVID-19). Accessed June 7, 2022 at: https://bestpractice.bmj.com/topics/en-us/17/history-exam
  • 84 Thein TL, Ang LW, Young BE, Chen MIC, Leo YS, Lye DCB. Differentiating coronavirus disease 2019 (COVID-19) from influenza and dengue. Sci Rep 2021; 11 (01) 19713
  • 85 Song X, Delaney M, Shah RK, Campos JM, Wessel DL, DeBiasi RL. Comparison of clinical features of COVID-19 vs seasonal influenza A and B in US children. JAMA Netw Open 2020; 3 (09) e2020495
  • 86 Deng LS, Yuan J, Ding L. et al. Comparison of patients hospitalized with COVID-19, H7N9 and H1N1. Infect Dis Poverty 2020; 9 (01) 163
  • 87 Cipollaro L, Giordano L, Padulo J, Oliva F, Maffulli N. Musculoskeletal symptoms in SARS-CoV-2 (COVID-19) patients. J Orthop Surg Res 2020; 15 (01) 178
  • 88 Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect Dis 2005; 5 (11) 718-725
  • 89 Pahal P, Rajasurya V, Sharma S. Typical bacterial pneumonia. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2021
  • 90 Budinger GRS, Misharin AV, Ridge KM, Singer BD, Wunderink RG. Distinctive features of severe SARS-CoV-2 pneumonia. J Clin Invest 2021; 131 (14) 149412
  • 91 Zhao D, Yao F, Wang L. et al. A comparative study on the clinical features of coronavirus 2019 (COVID-19) pneumonia with other pneumonias. Clin Infect Dis 2020; 71 (15) 756-761
  • 92 Sanz F, Restrepo MI, Fernández-Fabrellas E. et al. Does prolonged onset of symptoms have a prognostic significance in community-acquired pneumonia?. Respirology 2014; 19 (07) 1073-1079
  • 93 Radia T, Williams N, Agrawal P. et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): a systematic review of clinical features and presentation. Paediatr Respir Rev 2021; 38: 51-57
  • 94 Lee MN, Cha JH, Ahn HM. et al. Mycoplasma pneumoniae infection in patients with Kawasaki disease. Korean J Pediatr 2011; 54 (03) 123-127
  • 95 Prato A, Gulisano M, Scerbo M, Barone R, Vicario CM, Rizzo R. Diagnostic approach to pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS): a narrative review of literature data. Front Pediatr 2021; 9: 746639
  • 96 Brant Pinheiro SV, de Freitas VB, de Castro GV. et al. Acute post-streptococcal glomerulonephritis in children: a comprehensive review. Curr Med Chem 2022; 29 (34) 5543-5559
  • 97 Uziel Y, Perl L, Barash J, Hashkes PJ. Post-streptococcal reactive arthritis in children: a distinct entity from acute rheumatic fever. Pediatr Rheumatol Online J 2011; 9 (01) 32
  • 98 Cajanding RJM. Silent hypoxia in COVID-19 pneumonia: state of knowledge, pathophysiology, mechanisms, and management. AACN Adv Crit Care 2022; 33 (02) 143-153
  • 99 Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir Res 2020; 21 (01) 198
  • 100 Gattinoni L, Chiumello D, Caironi P. et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Med 2020; 46 (06) 1099-1102
  • 101 Pimentel MAF, Redfern OC, Hatch R, Young JD, Tarassenko L, Watkinson PJ. Trajectories of vital signs in patients with COVID-19. Resuscitation 2020; 156: 99-106
  • 102 Huang G, Kovalic AJ, Graber CJ. Prognostic value of leukocytosis and lymphopenia for coronavirus disease severity. Emerg Infect Dis 2020; 26 (08) 1839-1841
  • 103 Bermejo-Martin JF, Cilloniz C, Mendez R. et al; NEUMONAC Group. Lymphopenic community acquired pneumonia (L-CAP), an immunological phenotype associated with higher risk of mortality. EBioMedicine 2017; 24: 231-236
  • 104 Simadibrata DM, Calvin J, Wijaya AD, Ibrahim NAA. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: a meta-analysis. Am J Emerg Med 2021; 42: 60-69
  • 105 Prozan L, Shusterman E, Ablin J. et al. Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 compared with Influenza and respiratory syncytial virus infection. Sci Rep 2021; 11 (01) 21519
  • 106 Stegeman I, Ochodo EA, Guleid F. et al; Cochrane COVID-19 Diagnostic Test Accuracy Group. Routine laboratory testing to determine if a patient has COVID-19. Cochrane Database Syst Rev 2020; 11 (11) CD013787
  • 107 Jinks MF, Kelly CA. The pattern and significance of abnormal liver function tests in community-acquired pneumonia. Eur J Intern Med 2004; 15 (07) 436-440
  • 108 Suresh Kumar VC, Harne PS, Mukherjee S. et al. Transaminitis is an indicator of mortality in patients with COVID-19: a retrospective cohort study. World J Hepatol 2020; 12 (09) 619-627
  • 109 Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann Clin Microbiol Antimicrob 2020; 19 (01) 18
  • 110 Smilowitz NR, Kunichoff D, Garshick M. et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J 2021; 42 (23) 2270-2279
  • 111 Ikeagwulonu RC, Ugwu NI, Ezeonu CT. et al. C-reactive protein and COVID-19 severity: a systematic review. West Afr J Med 2021; 38 (10) 1011-1023
  • 112 Fukui S, Inui A, Saita M, Kobayashi D, Naito T. Comparison of the clinical parameters of patients with COVID-19 and influenza using blood test data: a retrospective cross-sectional survey. J Int Med Res 2022; 50 (02) 300 0605221083751
  • 113 Lampart M, Zellweger N, Bassetti S. et al. Clinical utility of inflammatory biomarkers in COVID-19 in direct comparison to other respiratory infections - a prospective cohort study. PLoS One 2022; 17 (05) e0269005
  • 114 Chalmers JD, Singanayagam A, Hill AT. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121 (03) 219-225
  • 115 Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA 2020; DOI: 10.1001/jama.2020.17052.
  • 116 Sinha P, Matthay MA, Calfee CS. Is a “cytokine storm” relevant to COVID-19?. JAMA Intern Med 2020; 180 (09) 1152-1154
  • 117 Poudel A, Poudel Y, Adhikari A. et al. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. PLoS One 2021; 16 (08) e0256744
  • 118 Yao Y, Cao J, Wang Q. et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care 2020; 8: 49
  • 119 Zhan H, Chen H, Liu C. et al. Diagnostic value of D-dimer in COVID-19: a meta-analysis and meta-regression. Clin Appl Thromb Hemost 2021; 27: 10 760296211010976
  • 120 Varikasuvu SR, Varshney S, Dutt N. et al. D-dimer, disease severity, and deaths (3D-study) in patients with COVID-19: a systematic review and meta-analysis of 100 studies. Sci Rep 2021; 11 (01) 21888
  • 121 Arslan S, Ugurlu S, Bulut G, Akkurt I. The association between plasma D-dimer levels and community-acquired pneumonia. Clinics (São Paulo) 2010; 65 (06) 593-597
  • 122 Li J, Li S, Qiu X, Zhu W, Li L, Qin B. Performance of diagnostic model for differentiating between COVID-19 and influenza: a 2-center retrospective study. Med Sci Monit 2021; 27: e932361
  • 123 Christ-Crain M, Stolz D, Bingisser R. et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med 2006; 174 (01) 84-93
  • 124 Christ-Crain M, Jaccard-Stolz D, Bingisser R. et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 2004; 363 (9409): 600-607
  • 125 Schuetz P, Wirz Y, Sager R. et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev 2017; 10 (10) CD007498
  • 126 Schuetz P, Christ-Crain M, Thomann R. et al; ProHOSP Study Group. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 2009; 302 (10) 1059-1066
  • 127 Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. Procalcitonin to distinguish viral from bacterial pneumonia: a systematic review and meta-analysis. Clin Infect Dis 2020; 70 (03) 538-542
  • 128 Huang DT, Yealy DM, Filbin MR. et al; ProACT Investigators. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med 2018; 379 (03) 236-249
  • 129 Metlay JP, Waterer GW, Long AC. et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (07) e45-e67
  • 130 Cleland DA, Eranki AP. Procalcitonin. In: StatPearls. StatPearls Publishing; 2021
  • 131 Twe CW, Khoo DKY, Law KB. et al. The role of procalcitonin in predicting risk of mechanical ventilation and mortality among moderate to severe COVID-19 patients. BMC Infect Dis 2022; 22 (01) 378
  • 132 Shah V. Meaning of elevated procalcitonin unclear in COVID-19. Mass General Advances in Motion. Accessed June 20, 2022 at: https://advances.massgeneral.org/research-and-innovation/article.aspx?id=1174
  • 133 Pickens CO, Gao CA, Cuttica MJ. et al; NU COVID Investigators. Bacterial superinfection pneumonia in patients mechanically ventilated for COVID-19 pneumonia. Am J Respir Crit Care Med 2021; 204 (08) 921-932
  • 134 May M, Chang M, Dietz D. et al. Limited utility of procalcitonin in identifying community-associated bacterial infections in patients presenting with coronavirus disease 2019. Antimicrob Agents Chemother 2021; 65 (04) e02167-20
  • 135 Heer RS, Mandal AK, Kho J. et al. Elevated procalcitonin concentrations in severe COVID-19 may not reflect bacterial co-infection. Ann Clin Biochem 2021; 58 (05) 520-527
  • 136 Akamatsu MA, de Castro JT, Takano CY, Ho PL. Off balance: interferons in COVID-19 lung infections. EBioMedicine 2021; 73: 103642
  • 137 Grant RA, Morales-Nebreda L, Markov NS. et al; NU SCRIPT Study Investigators. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 2021; 590 (7847): 635-641
  • 138 Vedder V, Schildgen V, Lüsebrink J. et al. Differential cytology profiles in bronchoalveolar lavage (BAL) in COVID-19 patients: a descriptive observation and comparison with other corona viruses, influenza virus, Haemophilus influenzae, and Pneumocystis jirovecii . Medicine (Baltimore) 2021; 100 (01) e24256
  • 139 Gelarden I, Nguyen J, Gao J. et al. Comprehensive evaluation of bronchoalveolar lavage from patients with severe COVID-19 and correlation with clinical outcomes. Hum Pathol 2021; 113: 92-103
  • 140 Richardson S, Hirsch JS, Narasimhan M. et al; The Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020; 323 (20) 2052-2059
  • 141 Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA 2020; 323 (20) 2085-2086
  • 142 Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect 2020; 81 (02) 266-275
  • 143 Gao CA, Cuttica MJ, Malsin ES, Argento AC, Wunderink RG, Smith SB. NU COVID Investigators. Comparing nasopharyngeal and BAL SARS-CoV-2 assays in respiratory failure. Am J Respir Crit Care Med 2021; 203 (01) 127-129
  • 144 Gao CA, Bailey JI, Walter JM. et al. Bronchoscopy on intubated patients with COVID-19 is associated with low infectious risk to operators. Ann Am Thorac Soc 2021; 18 (07) 1243-1246
  • 145 Bartley PS, Deshpande A, Yu PC. et al. Bacterial coinfection in influenza pneumonia: rates, pathogens, and outcomes. Infect Control Hosp Epidemiol 2022; 43 (02) 212-217
  • 146 Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198 (07) 962-970
  • 147 Jenner WJ, Kanji R, Mirsadraee S. et al. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review. J Thromb Thrombolysis 2021; 51 (03) 595-607
  • 148 Stals MAM, Grootenboers MJJH, van Guldener C. et al; Dutch COVID & Thrombosis Coalition (DCTC). Risk of thrombotic complications in influenza versus COVID-19 hospitalized patients. Res Pract Thromb Haemost 2021; 5 (03) 412-420
  • 149 Smilowitz NR, Subashchandran V, Yuriditsky E. et al. Thrombosis in hospitalized patients with viral respiratory infections versus COVID-19. Am Heart J 2021; 231: 93-95
  • 150 Chaudhary R, Padrnos L, Wysokinska E. et al. Macrovascular thrombotic events in a Mayo clinic enterprise-wide sample of hospitalized COVID-19-positive compared with COVID-19-negative patients. Mayo Clin Proc 2021; 96 (07) 1718-1726
  • 151 Mei F, Fan J, Yuan J. et al. Comparison of venous thromboembolism risks between COVID-19 pneumonia and community-acquired pneumonia patients. Arterioscler Thromb Vasc Biol 2020; 40 (09) 2332-2337
  • 152 Cangemi R, Calvieri C, Falcone M. et al. Comparison of thrombotic events and mortality in patients with community-acquired pneumonia and COVID-19: a multicenter observational study. Thromb Haemost 2022; 122 (02) 257-266
  • 153 Song F, Shi N, Shan F. et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020; 295 (01) 210-217
  • 154 Ng MY, Lee EYP, Yang J. et al. Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol Cardiothorac Imaging 2020; 2 (01) e200034
  • 155 Yang Z, Lin D, Chen X. et al. Distinguishing COVID-19 from influenza pneumonia in the early stage through CT imaging and clinical features. Front Microbiol 2022; 13: 847836
  • 156 Liu KC, Xu P, Lv WF. et al. Differential diagnosis of coronavirus disease 2019 from community-acquired-pneumonia by computed tomography scan and follow-up. Infect Dis Poverty 2020; 9 (01) 118
  • 157 Litmanovich DE, Chung M, Kirkbride RR, Kicska G, Kanne JP. Review of chest radiograph findings of COVID-19 pneumonia and suggested reporting language. J Thorac Imaging 2020; 35 (06) 354-360
  • 158 Guarnera A, Podda P, Santini E, Paolantonio P, Laghi A. Differential diagnoses of COVID-19 pneumonia: the current challenge for the radiologist-a pictorial essay. Insights Imaging 2021; 12 (01) 34
  • 159 Miyashita N, Sugiu T, Kawai Y. et al. Radiographic features of Mycoplasma pneumoniae pneumonia: differential diagnosis and performance timing. BMC Med Imaging 2009; 9: 7
  • 160 Li L, Qin L, Xu Z. et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology 2020; 296 (02) E65-E71
  • 161 Cao B, Li XW, Mao Y. et al; National Influenza A Pandemic (H1N1) 2009 Clinical Investigation Group of China. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N Engl J Med 2009; 361 (26) 2507-2517
  • 162 Onigbinde SO, Ojo AS, Fleary L, Hage R. Chest computed tomography findings in COVID-19 and influenza: a narrative review. BioMed Res Int 2020; 2020: 6928368
  • 163 Elhakim TS, Abdul HS, Pelaez Romero C, Rodriguez-Fuentes Y. Spontaneous pneumomediastinum, pneumothorax and subcutaneous emphysema in COVID-19 pneumonia: a rare case and literature review. BMJ Case Rep 2020; 13 (12) e239489
  • 164 Tucker L, Patel S, Vatsis C. et al. Pneumothorax and pneumomediastinum secondary to COVID-19 disease unrelated to mechanical ventilation. Case Rep Crit Care 2020; 2020: 6655428
  • 165 Murayama S, Gibo S. Spontaneous pneumomediastinum and Macklin effect: overview and appearance on computed tomography. World J Radiol 2014; 6 (11) 850-854
  • 166 Kangas-Dick A, Gazivoda V, Ibrahim M. et al. Clinical characteristics and outcome of pneumomediastinum in patients with COVID-19 pneumonia. J Laparoendosc Adv Surg Tech A 2021; 31 (03) 273-278
  • 167 Baslas R, Condurache DG, Jayal A, Colquhoun M, de Wolff JF. Pneumomediastinum in patients with COVID-19 undergoing CT pulmonary angiography: a retrospective cohort study. Postgrad Med J 2022:postgradmedj-2022-141642
  • 168 Cunha BA, Pherez FM, Nouri Y. Legionella community-acquired pneumonia (CAP) presenting with spontaneous bilateral pneumothoraces. Heart Lung 2008; 37 (03) 238-241
  • 169 She WH, Chok KSH, Li IWS. et al. Pneumocystis jirovecii-related spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema in a liver transplant recipient: a case report. BMC Infect Dis 2019; 19 (01) 66
  • 170 Woodside KJ, vanSonnenberg E, Chon KS, Loran DB, Tocino IM, Zwischenberger JB. Pneumothorax in patients with acute respiratory distress syndrome: pathophysiology, detection, and treatment. J Intensive Care Med 2003; 18 (01) 9-20
  • 171 Gattinoni L, Bombino M, Pelosi P. et al. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 1994; 271 (22) 1772-1779