CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 182-203
DOI: 10.1055/s-0040-1708501
Review
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Metal Salen- and Salphen-Containing Organic Polymers: Synthesis and Applications

Sven M. Elbert
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Michael Mastalerz
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Received: 13 December 2019

Accepted after revision: 04 February 2020

Publication Date:
08 June 2020 (online)


Abstract

The properties of organic polymeric materials can be chemically fine-tuned by the implementation of functional groups or units within the backbone. Especially the inclusion of coordinated metal centers offers a nearly infinite toolbox to adjust properties and thus potential applications. In particular, salen and salphen complexes are widely known to be highly efficient homogenous catalysts. They are also used as luminescent materials and devices or as supramolecular building blocks. This review focusses on the class of salen- and salphen-containing organic polymers, from 1D to 3D. Besides the comparison of synthetic polymerization methods, properties and applications are discussed, with an emphasis on porous 2D and 3D polymeric metal salphens and salens for heterogeneous catalysis and gas sorption.

 
  • References

  • 1 Combes A. C. R. Acad. Fr. 1889; 108: 1252
    • 2a Takeuchi T, Böttcher A, Quezada CM, Meade TJ, Gray HB. Bioorg. Med. Chem. 1999; 7: 815
    • 2b Kwiatkowski E, Kwiatkowski M. Inorg. Chim. Acta 1980; 42: 197
    • 2c Dedieu A, Rohmer MM, Veillard A. J. Am. Chem. Soc. 1976; 98: 5789
    • 2d Böttcher A, Takeuchi T, Hardcastle KI, Meade TJ, Gray HB, Cwikel D, Kapon M, Dori Z. Inorg. Chem. 1997; 36: 2498
    • 3a Matsumoto K, Oguma T, Katsuki T. Angew. Chem. Int. Ed. 2009; 48: 7432
    • 3b Atwood DA. Coord. Chem. Rev. 1997; 165: 267
    • 3c Adão P, Costa Pessoa J, Henriques RT, Kuznetsov ML, Avecilla F, Maurya MR, Kumar U, Correia I. Inorg. Chem. 2009; 48: 3542
    • 4a Whitelaw EL, Loraine G, Mahon MF, Jones MD. Dalton Trans. 2011; 40: 11469
    • 4b Whitelaw EL, Davidson MG, Jones MD. Chem. Commun. 2011; 47: 10004
    • 4c Matsumoto K, Saito B, Katsuki T. Chem. Commun. 2007; 35: 3619
    • 4d Whitelaw EL, Jones MD, Mahon MF. Inorg. Chem. 2010; 49: 7176
    • 5a Li X-Y, Chen L, Gao L, Zhang Y, Akogun SF, Dong W-K. RSC Adv. 2017; 7: 35905
    • 5b Dong Y-J, Dong X-Y, Dong W-K, Zhang Y, Zhang L-S. Polyhedron 2017; 123: 305
    • 5c Dong W-K, Li X-L, Wang L, Zhang Y, Ding Y-J. Sens. Actuators, B 2016; 229: 370
    • 5d Akine S, Taniguchi T, Nabeshima T. Inorg. Chem. 2004; 43: 6142
    • 6a Akine S, Nabeshima T. Inorg. Chem. 2005; 44: 1205
    • 6b Yilmaz I, Temel H, Alp H. Polyhedron 2008; 27: 125
    • 6c Sowden RJ, Trotter KD, Dunbar L, Craig G, Erdemli O, Spickett CM, Reglinski J. Biometals 2013; 26: 85
    • 6d Patchett R, Magpantay I, Saudan L, Schotes C, Mezzetti A, Santoro F. Angew. Chem. Int. Ed. 2013; 52: 10352
    • 6e Fernandes RR, Lasri J, Kirillov AM, d. Silva MF. C. G, d. Silva JA. L, d. Silva JJ. R. F, Pombeiro AJ. L. Eur. J. Inorg. Chem. 2011; 2011: 3781
    • 6f Cox K, Kariuki BM, Smyth A, Newman PD. Dalton Trans. 2016; 45: 8485
    • 8a Sasaki H, Irie R, Hamada T, Suzuki K, Katsuki T. Tetrahedron 1994; 50: 11827
    • 8b Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L. J. Am. Chem. Soc. 1991; 113: 7063
    • 8c Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T. Tetrahedron: Asymmetry 1991; 2: 481
    • 8d Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T. Tetrahedron Lett. 1990; 31: 7345
    • 9a Hamachi K, Irie R, Katsuki T. Tetrahedron Lett. 1996; 37: 4979
    • 9b Nishinaga A, Yamato H, Abe T, Maruyama K, Matsuura T. Tetrahedron Lett. 1988; 29: 6309
  • 10 Fukuda T, Katsuki T. Synlett 1995; 1995: 825
    • 11a Palucki M, Hanson P, Jacobsen EN. Tetrahedron Lett. 1992; 33: 7111
    • 11b Reddy DR, Thornton ER. J. Chem. Soc., Chem. Commun. 1992; 172
    • 11c Adam W, Fell RT, Stegmann VR, Saha-Möller CR. J. Am. Chem. Soc. 1998; 120: 708
    • 11d Caori S, Kiyohiko N, Masaaki K, Junnosuke F. Bull. Chem. Soc. Jpn. 1991; 64: 1318
  • 12 O'Connor KJ, Wey S-J, Burrows CJ. Tetrahedron Lett. 1992; 33: 1001
    • 13a Jacobsen EN, Kakiuchi F, Konsler RG, Larrow JF, Tokunaga M. Tetrahedron Lett. 1997; 38: 773
    • 13b Wu MH, Jacobsen EN. Tetrahedron Lett. 1997; 38: 1693
  • 14 Schaus SE, Brånalt J, Jacobsen EN. J. Org. Chem. 1998; 63: 403
  • 15 North M, Orizu C, Tararov VI, Ikonnikov NS, Belokon YN, Hibbs DE, Hursthouse MB, Abdul Malik KM. Chem. Commun. 1998; 387
  • 16 Balasanthiran V, Chisholm MH, Durr CB. Dalton Trans. 2015; 44: 8205
  • 17 Reglinski J, Kennedy AR, Steel G. New J. Chem. 2015; 39: 2437
  • 18 Cui Y, Jiang J, Mao X, Wu J. Inorg. Chem. 2019; 58: 218
  • 19 Corazza F, Floriani C, Chiesi-Villa A, Guastini C, Ciurli S. J. Chem. Soc., Dalton Trans. 1988; 2341
  • 20 Spassky N, Wisniewski M, Pluta C, Le Borgne A. Macromol. Chem. Phys. 1996; 197: 2627
  • 21 Wagler J, Böhme U, Roewer G. Angew. Chem. Int. Ed. 2002; 41: 1732
  • 22 Agustin D, Rima G, Gornitzka H, Barrau J. Organometallics 2000; 19: 4276
  • 23 Sánchez M, Harvey MJ, Nordstrom F, Parkin S, Atwood DA. Inorg. Chem. 2002; 41: 5397
  • 24 Meermann C, Sirsch P, Törnroos KW, Anwander R. Dalton Trans. 2006; 1041
  • 25 Floriani C, Solari E, Corazza F, Chiesi-Villa A, Guastini C. Angew. Chem. 1989; 101: 91
  • 26 Seangprasertkij R, Riechel TL. Inorg. Chem. 1986; 25: 3121
  • 27 Coggon P, McPhail AT, Mabbs FE, Richards A, Thornley AS. J. Chem. Soc. A 1970; 3296
  • 28 Wiznycia AV, Desper J, Levy C. J. Chem. Commun. 2005; 4693
  • 29 Darensbourg DJ, Ortiz CG, Billodeaux DR. Inorg. Chim. Acta 2004; 357: 2143
  • 30 Pizzolato E, Natali M, Posocco B, Montellano Lopez A, Bazzan I, Di Valentin M, Galloni P, Conte V, Bonchio M, Scandola F, Sartorel A. Chem. Commun. 2013; 49: 9941
  • 31 Amirnasr M, Schenk KJ, Gorji A, Vafazadeh R. Polyhedron 2001; 20: 695
  • 32 Chong JH, Ardakani SJ, Smith KJ, MacLachlan MJ. Chem. Eur. J. 2009; 15: 11824
  • 33 Klement R, Stock F, Elias H, Paulus H, Pelikán P, Valko M, Mazúr M. Polyhedron 1999; 18: 3617
  • 34 Anselmo D, Salassa G, Escudero-Adán EC, Martin E, Kleij AW. Dalton Trans. 2013; 42: 7962
  • 35 Shen Y-Z, Pan Y, Wang L-Y, Dong G, Jin X-P, Huang X-Y, Hu H. J. Organomet. Chem. 1999; 590: 242
  • 36 Agustin D, Rima G, Gornitzka H, Barrau J. J. Organomet. Chem. 1999; 592: 1
  • 37 Costes J-P, Dupuis A, Laurent J-P. Inorg. Chim. Acta 1998; 268: 125
  • 38 Zhu H, Wang M, Ma C, Li B, Chen C, Sun L. J. Organomet. Chem. 2005; 690: 3929
  • 39 Floriani C, Solari E, Franceschi F, Scopelliti R, Belanzoni P, Rosi M. Chem. Eur. J. 2001; 7: 3052
  • 40 Luts T, Frank R, Suprun W, Fritzsche S, Hey-Hawkins E, Papp H. J. Mol. Catal. A: Chem. 2007; 273: 250
  • 41 Jurisson S, Lindoy LF, Dancey KP, McPartlin M, Tasker PA, Uppal DK, Deutsch E. Inorg. Chem. 1984; 23: 227
  • 42 Chichak K, Jacquemard U, Branda NR. Eur. J. Inorg. Chem. 2002; 357
  • 43 Rogers CA, West BO. J. Organomet. Chem. 1974; 70: 445
  • 44 Yoon I, Narita M, Shimizu T, Asakawa M. J. Am. Chem. Soc. 2004; 126: 16740
  • 45 Barwiolek M, Sawicka J, Babinska M, Wojtczak A, Surdykowski A, Szczesny R, Szlyk E. Polyhedron 2017; 135: 153
  • 46 Tajmir-Riahi HA. Polyhedron 1983; 2: 723
  • 47 Sharma P, Rosas N, Ramashankar A. Main Group Met Chem 1995; 18: 621
  • 48 Srivastava TN, Chauhan AK. S, Mehrotra GK. Synth. React. Inorg. Met.-Org. Chem. 1982; 12: 705
  • 49 Klamm BE, Windorff CJ, Marsh ML, Meeker DS, Albrecht-Schmitt TE. Chem. Commun. 2018; 54: 8634
  • 50 Costes J-P, Laussac J-P, Nicodème F. J. Chem. Soc., Dalton Trans. 2002; 2731
  • 51 Taha ZA, Ajlouni AM, Al Momani W, Al-Ghzawi AA. Spectrochim. Acta, Part A 2011; 81: 570
  • 52 Tsuchimoto M, Ookusa M, Itoh S, Watanabe M, Nakajima K. Polyhedron 2018; 148: 118
  • 53 Berardozzi R, Pescitelli G, Di Pietro S, Resta C, Ballistreri FP, Pappalardo A, Tomaselli GA, Di Bari L. Chirality 2015; 27: 857
  • 54 Tyagi SB, Singh B, Kapoor RN. Transition Met. Chem. 1987; 12: 405
  • 55 Santini-Scampucci C, Wilkinson G. J. Chem. Soc., Dalton Trans. 1976; 807
  • 56 Yeung KT, To WP, Sun C, Cheng G, Ma C, Tong GS. M, Yang C, Che CM. Angew. Chem. Int. Ed. 2017; 56: 133
  • 57 Ison EA, Cessarich JE, Du G, Fanwick PE, Abu-Omar MM. Inorg. Chem. 2006; 45: 2385
  • 58 Che CM, Cheng WK, Mak TC. W. Inorg. Chem. 1986; 25: 703
  • 59 Mercati G, Morazzoni F. J. Chem. Soc., Dalton Trans. 1979; 569
  • 60 Guo Z, Yiu S-M, Chan MC. W. Chem. Eur. J. 2013; 19: 8937
  • 61 Barnholtz SL, Lydon JD, Huang G, Venkatesh M, Barnes CL, Ketring AR, Jurisson SS. Inorg. Chem. 2001; 40: 972
  • 62 Pellerito L, Cefalù R, Ruisi G. J. Organomet. Chem. 1972; 44: 243
  • 63 Balasanthiran V, Chisholm MH, Durr CB, Gallucci JC. Dalton Trans. 2013; 42: 11234
  • 64 Agarwal DD, Srivastava S, Chadha P. Polyhedron 1990; 9: 1401
  • 65 Brancatelli G, Pappalardo A, Trusso Sfrazzetto G, Notti A, Geremia S. Inorg. Chim. Acta 2013; 396: 25
  • 66 Copping R, Mougel V, Den Auwer C, Berthon C, Moisy P, Mazzanti M. Dalton Trans. 2012; 41: 10900
  • 67 Zhang H-C, Huang W-S, Pu L. J. Org. Chem. 2001; 66: 481
  • 69 Xu Z-X, Huang Z-T, Chen C-F. Tetrahedron Lett. 2009; 50: 5430
  • 70 Escárcega-Bobadilla MV, Salassa G, Martínez Belmonte M, Escudero-Adán EC, Kleij AW. Chem. Eur. J. 2012; 18: 6805
    • 71a Zintl M, Molnar F, Urban T, Bernhart V, Preishuber-Pflügl P, Rieger B. Angew. Chem. Int. Ed. 2008; 47: 3458
    • 71b Vagin SI, Reichardt R, Klaus S, Rieger B. J. Am. Chem. Soc. 2010; 132: 14367
    • 71c Vagin S, Winnacker M, Kronast A, Altenbuchner PT, Deglmann P, Sinkel C, Loos R, Rieger B. ChemCatChem 2015; 7: 3963
    • 71d Reichardt R, Vagin S, Reithmeier R, Ott AK, Rieger B. Macromolecules 2010; 43: 9311
    • 71e Mandal M, Chakraborty D. J Polym Sci A Polym Chem 2016; 54: 809
    • 72a Castro-Gómez F, Salassa G, Kleij AW, Bo C. Chem. Eur. J. 2013; 19: 6289
    • 72b Decortes A, Kleij AW. ChemCatChem 2011; 3: 831
    • 72c Castro-Osma JA, North M, Wu X. Chem. Eur. J. 2016; 22: 2100
    • 72d Martín R, Kleij AW. ChemSusChem 2011; 4: 1259
    • 73a Taherimehr M, Decortes A, Al-Amsyar SM, Lueangchaichaweng W, Whiteoak CJ, Escudero-Adan EC, Kleij AW, Pescarmona PP. Catal. Sci. Technol. 2012; 2: 2231
    • 73b Escudero-Adán EC, Benet-Buchholz J, Kleij AW. Chem. Eur. J. 2009; 15: 4233
    • 73c Kleij AW, Lutz M, Spek AL, van Leeuwen PW. N. M, Reek JN. H. Chem. Commun. 2005; 3661
    • 73d Dalla Cort A, Mandolini L, Pasquini C, Rissanen K, Russo L, Schiaffino L. New J. Chem. 2007; 31: 1633
    • 74a Theil H, von Richthofen C-GF, Stammler A, Bögge H, Glaser T. Inorg. Chim. Acta 2008; 361: 916
    • 74b Sakata Y, Murata C, Akine S. Nat. Commun. 2017; 8: 16005
    • 74c Houjou H, Ito M, Araki K. Inorg. Chem. 2009; 48: 10703
    • 74d Glaser T, Heidemeier M, Krickemeyer E, Bögge H, Stammler A, Fröhlich R, Bill E, Schnack J. Inorg. Chem. 2009; 48: 607
    • 74e Glaser T, Heidemeier M, Fröhlich R, Hildebrandt P, Bothe E, Bill E. Inorg. Chem. 2005; 44: 5467
    • 74f Bazarnik M, Bugenhagen B, Elsebach M, Sierda E, Frank A, Prosenc MH, Wiesendanger R. Nano Lett. 2016; 16: 577
    • 75a Borisova NE, Reshetova MD, Ustynyuk YA. Chem. Rev. 2007; 107: 46
    • 75b Akine S, Taniguchi T, Nabeshima T. Tetrahedron Lett. 2001; 42: 8861
    • 75c Hui JK. H, MacLachlan MJ. Chem. Commun. 2006; 2480
    • 75d Gallant AJ, Chong JH, MacLachlan MJ. Inorg. Chem. 2006; 45: 5248
    • 75e Frischmann PD, Facey GA, Ghi PY, Gallant AJ, Bryce DL, Lelj F, MacLachlan MJ. J. Am. Chem. Soc. 2010; 132: 3893
    • 75f Nabeshima T, Miyazaki H, Iwasaki A, Akine S, Saiki T, Ikeda C. Tetrahedron 2007; 63: 3328
    • 75g Frischmann PD, Mehr SH. M, Patrick BO, Lelj F, MacLachlan MJ. Inorg. Chem. 2012; 51: 3443
    • 76a Sakata Y, Chiba S, Miyashita M, Nabeshima T, Akine S. Chem. Eur. J. 2019; 25: 2962
    • 76b Ng CK, Toh RW, Lin TT, Luo H-K, Hor TS. A, Wu J. Chem. Sci. 2019; 10: 1549
    • 76c Lai J, Ke X-S, Tang J, Zhang J-L. Chin. Chem. Lett. 2015; 26: 937
    • 76d Akine S, Piao S, Miyashita M, Nabeshima T. Tetrahedron Lett. 2013; 54: 6541
    • 76e Akine S, Miyashita M, Piao S, Nabeshima T. Inorg. Chem. Front. 2014; 1: 53
    • 76f Akine S, Miyashita M, Nabeshima T. Chem. Eur. J. 2019; 25: 1432
    • 76g Akine S, Miyashita M, Nabeshima T. J. Am. Chem. Soc. 2017; 139: 4631
    • 78a Kuil M, Puijk IM, Kleij AW, Tooke DM, Spek AL, Reek JN. H. Chem. Asian J. 2009; 4: 50
    • 78b Kleij AW, Kuil M, Tooke DM, Lutz M, Spek AL, Reek JN. H. Chem. Eur. J. 2005; 11: 4743
    • 79a Xuan W, Zhang M, Liu Y, Chen Z, Cui Y. J. Am. Chem. Soc. 2012; 134: 6904
    • 79b Tan C, Jiao J, Li Z, Liu Y, Han X, Cui Y. Angew. Chem. Int. Ed. 2018; 57: 2085
    • 79c Jiao J, Tan C, Li Z, Liu Y, Han X, Cui Y. J. Am. Chem. Soc. 2018; 140: 2251
    • 79d Dong J, Zhou Y, Zhang F, Cui Y. Chem. Eur. J. 2014; 20: 6455
  • 80 Dong J, Tan C, Zhang K, Liu Y, Low PJ, Jiang J, Cui Y. J. Am. Chem. Soc. 2017; 139: 1554
    • 81a Kitaura R, Onoyama G, Sakamoto H, Matsuda R, Noro S-i, Kitagawa S. Angew. Chem. Int. Ed. 2004; 43: 2684
    • 81b Oh M, Mirkin CA. Nature 2005; 438: 651
    • 81c Cho S-H, Ma B, Nguyen ST, Hupp JT, Albrecht-Schmitt TE. Chem. Commun. 2006; 24: 2563
    • 81d Oh M, Mirkin CA. Angew. Chem. Int. Ed. 2006; 45: 5492
    • 81e Heo J, Jeon Y-M, Mirkin CA. J. Am. Chem. Soc. 2007; 129: 7712
    • 81f Jeon Y-M, Heo J, Mirkin CA. J. Am. Chem. Soc. 2007; 129: 7480
    • 81g Jeon Y-M, Armatas GS, Heo J, Kanatzidis MG, Mirkin CA. Adv. Mater. 2008; 20: 2105
    • 81h Jung S, Oh M. Angew. Chem. Int. Ed. 2008; 47: 2049
    • 81i Bhunia A, Roesky PW, Lan Y, Kostakis GE, Powell AK. Inorg. Chem. 2009; 48: 10483
    • 81j Jung S, Cho W, Lee HJ, Oh M. Angew. Chem. Int. Ed. 2009; 48: 1459
    • 81k Li G, Zhu C, Xi X, Cui Y. Chem. Commun. 2009; 2118
    • 81l Yuan G, Zhu C, Xuan W, Cui Y. Chem. Eur. J. 2009; 15: 6428
    • 81m Song F, Wang C, Falkowski JM, Ma L, Lin W. J. Am. Chem. Soc. 2010; 132: 15390
    • 81n Bhunia A, Lan Y, Mereacre V, Gamer MT, Powell AK, Roesky PW. Inorg. Chem. 2011; 50: 12697
    • 81o Falkowski JM, Wang C, Liu S, Lin W. Angew. Chem. Int. Ed. 2011; 50: 8674
    • 81p Huang Y, Liu T, Lin J, Lü J, Lin Z, Cao R. Inorg. Chem. 2011; 50: 2191
    • 81q Roesky PW, Bhunia A, Lan Y, Powell AK, Kureti S. Chem. Commun. 2011; 47: 2035
    • 81r Shultz AM, Sarjeant AA, Farha OK, Hupp JT, Nguyen ST. J. Am. Chem. Soc. 2011; 133: 13252
    • 81s Song F, Wang C, Lin W. Chem. Commun. 2011; 47: 8256
    • 81t Wang C, Zheng M, Lin W. J. Phys. Chem. Lett. 2011; 2: 1701
    • 81u Xiang S-C, Zhang Z, Zhao C-G, Hong K, Zhao X, Ding D-R, Xie M-H, Wu C-D, Das MC, Gill R, Thomas KM, Chen B. Nat. Commun. 2011; 2: 204
    • 81v Falkowski JM, Liu S, Wang C, Lin W. Chem. Commun. 2012; 48: 6508
    • 81w Zhu C, Yuan G, Chen X, Yang Z, Cui Y. J. Am. Chem. Soc. 2012; 134: 8058
    • 81x Ren Y, Shi Y, Chen J, Yang S, Qi C, Jiang H. RSC Adv. 2013; 3: 2167
    • 81y Li J, Yang J, Liu YY, Ma JF. Chem. Eur. J. 2015; 21: 4413
    • 81z Xi W, Liu Y, Xia Q, Li Z, Cui Y. Chem. Eur. J. 2015; 21: 12581
    • 81aa Bhunia A, Dey S, Moreno JM, Diaz U, Concepcion P, Van Hecke K, Janiak C, Van Der Voort P. Chem. Commun. 2016; 52: 1401
    • 81ab Xia Q, Liu Y, Li Z, Gong W, Cui Y. Chem. Commun. 2016; 52: 13167
    • 81ac Zhu C, Xia Q, Chen X, Liu Y, Du X, Cui Y. ACS Catal. 2016; 6: 7590
    • 83a Li H, Hill MR, Huang R, Doblin C, Lim S, Hill AJ, Babarao R, Falcaro P. Chem. Commun. 2016; 52: 5973
    • 83b Yang S, Peng L, Sun DT, Asgari M, Oveisi E, Trukhina O, Bulut S, Jamali A, Queen WL. Chem. Sci. 2019; 10: 4542
    • 84a Wezenberg SJ, Kleij AW. Angew. Chem. Int. Ed. 2008; 47: 2354
    • 84b Yuan G, Jiang H, Zhang L, Liu Y, Cui Y. Coord. Chem. Rev. 2019; 378: 483
    • 84c Crane AK, MacLachlan MJ. Eur. J. Inorg. Chem. 2012; 2012: 17
  • 85 Waltman RJ, Bargon J. Can. J. Chem. 1986; 64: 76
  • 86 Boffa LS. Applied Polymer Science: 21st Century. Craver CD, Carraher CE. , eds. Pergamon: Oxford; 2000: 1021-1042
  • 87 Odian G. Princiles of Polymerization. 4th edn. John Wiley & Sons, Inc.; Hoboken, NJ: 2004
  • 88 Marvel CS, Tarköy N. J. Am. Chem. Soc. 1957; 79: 6000
  • 89 Marvel CS, Tarköy N. J. Am. Chem. Soc. 1958; 80: 832
    • 90a Manecke VG, Wille WE. Makromol. Chem. 1970; 133: 61
    • 90b Manecke G, Wille WE, Kossmehl G. Makromol. Chem. 1972; 160: 111
  • 91 Goldsby KA. J. Coord. Chem. 1988; 19: 83
    • 92a Hoferkamp LA, Goldsby KA. Chem. Mater. 1989; 1: 348
    • 92b Goldsby KA, Blaho JK, Hoferkamp LA. Polyhedron 1989; 8: 113
    • 93a Dahm CE, Peters DG. Anal. Chem. 1994; 66: 3117
    • 93b Vilas-Boas M, Freire C, de Castro B, Christensen PA, Hillman AR. Inorg. Chem. 1997; 36: 4919
  • 95 Kingsborough RP, Swager TM. J. Am. Chem. Soc. 1999; 121: 8825
  • 96 Tchepournaya I, Vasilieva S, Logvinov S, Timonov A, Amadelli R, Bartak D. Langmuir 2003; 19: 9005
  • 97 Holliday BJ, Stanford TB, Swager TM. Chem. Mater. 2006; 18: 5649
    • 98a Chen C, Zhu Z, Li X, Li J. J. Appl. Polym. Sci. 2017; 134: 44464
    • 98b Tedim J, Gonçalves F, Pereira MF. R, Figueiredo JL, Moura C, Freire C, Hillman AR. Electrochim. Acta 2008; 53: 6722
    • 98c Gao F, Li J, Kang F, Zhang Y, Wang X, Ye F, Yang J. J. Phys. Chem. C 2011; 115: 11822
    • 99a Zhang Y, Li J, Gao F, Kang F, Wang X, Ye F, Yang J. Electrochim. Acta 2012; 76: 1
    • 99b Chen C, Li X, Deng F, Li J. RSC Adv. 2016; 6: 79894
    • 100a Wittung P, Nielsen PE, Buchardt O, Egholm M, Nordén B. Nature 1994; 368: 561
    • 100b Leslie AG. W, Arnott S, Chandrasekaran R, Ratliff RL. J. Mol. Biol. 1980; 143: 49
    • 101a Yoshio F, Takeshi M, Takeshi T, Nobuaki M, Toshikazu T. Chem. Lett. 2001; 30: 1020
    • 101b Maeda T, Furusho Y, Takata T. Chirality 2002; 14: 587
    • 101c Maeda T, Takeuchi T, Furusho Y, Takata T. J. Polym. Sci., Part A: Polym. Chem. 2004; 42: 4693
    • 102a Houjou H, Shimizu Y, Koshizaki N, Kanesato M. Adv. Mater. 2003; 15: 1458
    • 102b Houjou H, Sasaki T, Shimizu Y, Koshizaki N, Kanesato M. Adv. Mater. 2005; 17: 606
  • 103 Lavastre O, Illitchev I, Jegou G, Dixneuf PH. J. Am. Chem. Soc. 2002; 124: 5278
    • 104a Leung AC. W, Chong JH, Patrick BO, MacLachlan MJ. Macromolecules 2003; 36: 5051
    • 104b Leung AC. W, MacLachlan MJ. J. Mater. Chem. 2007; 17: 1923
  • 105 Sun S, Tong W-L, Chan MC. W. Macromol. Rapid Commun. 2010; 31: 1965
  • 106 Zhao C, Sun S, Tong W-L, Chan MC. W. Macromolecules 2017
  • 107 Wang J, Huang W, Pan L, Wang H, Zhang C, Liu X. Macromol. Res. 2015; 23: 309
  • 108 Chantarasiri N, Tuntulani T, Tongraung P, Seangprasertkit-Magee R, Wannarong W. Eur. Polym. J. 2000; 36: 695
  • 109 Jiang J, Leung AC. W, MacLachlan MJ. Dalton Trans. 2010; 39: 6503
    • 110a Luo R, Zhou X, Chen S, Li Y, Zhou L, Ji H. Green Chem. 2014; 16: 1496
    • 110b Leng Y, Lu D, Zhang C, Jiang P, Zhang W, Wang J. Chem. Eur. J. 2016; 22: 8368
    • 110c Luo R, Chen Y, He Q, Lin X, Xu Q, He X, Zhang W, Zhou X, Ji H. ChemSusChem 2017; 10: 1526
  • 111 Nielsen M, Thomsen AH, Jensen TR, Jakobsen HJ, Skibsted J, Gothelf KV. Eur. J. Org. Chem. 2005; 2005: 342
  • 112 Li L-H, Feng X-L, Cui X-H, Ma Y-X, Ding S-Y, Wang W. J. Am. Chem. Soc. 2017; 139: 6042
    • 113a Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. J. Am. Chem. Soc. 2017; 139: 8693
    • 113b Li H, Feng X, Shao PP, Chen J, Li CZ, Jayakumar S, Yang QH. J. Mater. Chem. A 2019; 7: 5482
    • 114a Haak RM, Castilla AM, Belmonte MM, Escudero-Adán EC, Benet-Buchholz J, Kleij AW. Dalton Trans. 2011; 40: 3352
    • 114b Escudero-Adán EC, Benet-Buchholz J, Kleij AW. Inorg. Chem. 2007; 46: 7265
  • 115 Elbert SM, Zhang W-S, Vaynzof Y, Oberhof N, Bernhardt M, Pernpointner M, Rominger F, Schröder RR, Mastalerz M. Chem. Mater. 2019; 31: 6210
  • 116 Elbert SM, Rominger F, Mastalerz M. Chem. Eur. J. 2014; 20: 16707
  • 117 Johnson JA, Chen S, Reeson TC, Chen Y-S, Zeng XC, Zhang J. Chem. Eur. J. 2014; 20: 7632
    • 118a Li H, Xu B, Liu X, , A S, He C, Xia H, Mu Y. J. Mater. Chem. A 2013; 1: 14108
    • 118b Xie Y, Wang T-T, Liu X-H, Zou K, Deng W-Q. Nat. Commun. 2013; 4: 1960
    • 118c Li H, Li Z, Zhang Y, Luo X, Xia H, Liu X, Mu Y. RSC Adv. 2014; 4: 37767
    • 118d Liu TT, Lin ZJ, Shi PC, Ma T, Huang YB, Cao R. ChemCatChem 2015; 7: 2340
    • 118e Alkordi MH, Weseliński ŁJ, D'Elia V, Barman S, Cadiau A, Hedhili MN, Cairns AJ, AbdulHalim RG, Basset J-M, Eddaoudi M. J. Mater. Chem. A 2016; 4: 7453
    • 119a Gupta KC, Abdulkadir HK, Chand S. J. Mol. Catal. A: Chem. 2003; 202: 253
    • 119b Alvaro M, Baleizao C, Carbonell E, El Ghoul M, García H, Gigante B. Tetrahedron 2005; 61: 12131
  • 120 Wang R-M, Hao E-X, Shen G-R, He Y-F, Lei Z-Q. J. Appl. Polym. Sci. 2009; 111: 1999
    • 121a Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
    • 121b Ding S-Y, Wang W. Chem. Soc. Rev. 2013; 42: 548
    • 121c Diercks CS, Yaghi OM. Science 2017 355
  • 122 Mastalerz M, Oppel IM. Eur. J. Org. Chem. 2011; 5971
  • 123 Mastalerz M, Hauswald H-JS, Stoll R. Chem. Commun. 2012; 48: 130
  • 124 Yan S, Guan X, Li H, Li D, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc. 2019; 141: 2920
  • 125 Huang J, Han X, Yang S, Cao Y, Yuan C, Liu Y, Wang J, Cui Y. J. Am. Chem. Soc. 2019; 141: 8996
  • 126 Liu H, Feng J, Zhang J, Miller PW, Chen L, Su C-Y. Chem. Sci. 2015; 6: 2292
  • 127 Reinhard D, Zhang W-S, Vaynzof Y, Rominger F, Schröder RR, Mastalerz M. Chem. Mater. 2018; 30: 2781
  • 128 Chun J, Kang S, Kang N, Lee SM, Kim HJ, Son SU. J. Mater. Chem. A 2013; 1: 5517
  • 129 Wöhrle D, Bohlen H, Rothkopf HW. Makromol. Chem. 1983; 184: 763
  • 130 Krishnan R, Vancheesan S. J. Mol. Catal. A: Chem. 2000; 157: 15
    • 131a Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353
    • 131b Decortes A, Castilla AM, Kleij AW. Angew. Chem. Int. Ed. 2010; 49: 9822
  • 132 Liu T-T, Liang J, Huang Y-B, Cao R. Chem. Commun. 2016; 52: 13288
  • 133 Bhunia S, Molla RA, Kumari V, Islam SM, Bhaumik A. Chem. Commun. 2015; 51: 15732 . It is worth mentioning that for similar transformations much higher TONs of up to 2000 and TOFs of 1000 h−1 were found for MOF-based heterogenous catalysts, as seen in: Zhou, Z.; He, C; Xia, J; Yang, L; Duan, C. J. Am. Chem. Soc. 2015, 137, 15066. For comparable homogenous catalysts, TONs as high as 112000 and TOFs up to 36000 h−1 are reported as seen in: Whiteoak, C.J.; Kleij, A.W. Synlett. 2013, 24, 1748
  • 134 Kleij AW. Dalton Trans. 2009; 4635
  • 135 Katsuki T. J. Synth. Org. Chem. Jpn. 1995; 53: 940
    • 136a Liu P, Feng X-J, He R. Tetrahedron 2010; 66: 631
    • 136b Gogoi A, Dewan A, Borah G, Bora U. New J. Chem. 2015; 39: 3341
    • 136c Borhade SR, Waghmode SB. Tetrahedron Lett. 2008; 49: 3423
  • 137 Li JR, Yu JM, Lu WG, Sun LB, Sculley J, Balbuena PB, Zhou HC. Nat. Commun. 2013; 4: 1538
    • 138a Vaidhyanathan R, Iremonger SS, Dawson KW, Shimizu GK. H. Chem. Commun. 2009; 5230
    • 138b Dietzel PD. C, Besikiotis V, Blom R. J. Mater. Chem. 2009; 19: 7362
    • 138c Dietzel PD. C, Johnsen RE, Fjellvåg H, Bordiga S, Groppo E, Chavan S, Blom R. Chem. Commun. 2008; 5125
    • 139a Min Wang Q, Shen D, Bülow M, Ling Lau M, Deng S, Fitch FR, Lemcoff NO, Semanscin J. Microporous Mesoporous Mater. 2002; 55: 217
    • 139b Farrusseng D, Daniel C, Gaudillère C, Ravon U, Schuurman Y, Mirodatos C, Dubbeldam D, Frost H, Snurr RQ. Langmuir 2009; 25: 7383
  • 140 Volkringer C, Loiseau T, Haouas M, Taulelle F, Popov D, Burghammer M, Riekel C, Zlotea C, Cuevas F, Latroche M, Phanon D, Knöfelv C, Llewellyn PL, Férey G. Chem. Mater. 2009; 21: 5783
  • 141 Tong W-L, Lai L-M, Chan MC. W. Dalton Trans. 2008; (11) 1412
  • 142 The enantiomeric fluorescence difference ratio (ef) is defined as the ratio in fluorescence intensity of the sensoric polymer at similar concentration of each enantiomer.
  • 143 Song F, Wei G, Wang L, Jiao J, Cheng Y, Zhu C. J. Org. Chem. 2012; 77: 4759
    • 144a Alaerts L, Maes M, Giebeler L, Jacobs PA, Martens JA, Denayer JF. M, Kirschhock CE. A, De Vos DE. J. Am. Chem. Soc. 2008; 130: 14170
    • 144b Finsy V, Verelst H, Alaerts L, De Vos D, Jacobs PA, Baron GV, Denayer JF. M. J. Am. Chem. Soc. 2008; 130: 7110
    • 144c Holcroft JM, Hartlieb KJ, Moghadam PZ, Bell JG, Barin G, Ferris DP, Bloch ED, Algaradah MM, Nassar MS, Botros YY, Thomas KM, Long JR, Snurr RQ, Stoddart JF. J. Am. Chem. Soc. 2015; 137: 5706
    • 144d Moreira MA, Santos JC, Ferreira AF. P, Loureiro JM, Ragon F, Horcajada P, Shim K-E, Hwang Y-K, Lee UH, Chang J-S, Serre C, Rodrigues AE. Langmuir 2012; 28: 5715
    • 144e Moreira MA, Santos JC, Ferreira AF. P, Loureiro JM, Ragon F, Horcajada P, Yot PG, Serre C, Rodrigues AE. Microporous Mesoporous Mater. 2012; 158: 229
    • 144f Moreira MA, Santos JC, Ferreira AF. P, Loureiro JM, Ragon F, Horcajada P, Yot PG, Serre C, Rodrigues AE. Langmuir 2012; 28: 3494
    • 144g Moreira MA, Santos JC, Ferreira AF. P, Loureiro JM, Rodrigues AE. Ind. Eng. Chem. Res. 2011; 50: 7688
    • 144h Moreira MA, Santos JC, Ferreira AF. P, Müller U, Trukhan N, Loureiro JM, Rodrigues AE. Sep. Sci. Technol. 2011; 46: 1995
    • 144i Moreira MA, Santos MP. S, Silva CG, Loureiro JM, Chang J-S, Serre C, Ferreira AF. P, Rodrigues AE. Adsorption 2018; 24: 715
    • 144j Nicolau MP. M, Bárcia PS, Gallegos JM, Silva JA. C, Rodrigues AE, Chen B. J. Phys. Chem. C 2009; 113: 13173
    • 144k Yang C-X, Yan X-P. Anal. Chem. 2011; 83: 7144